IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1514-1525. doi: 10.1109/TUFFC.2017.2737948. Epub 2017 Aug 9.
Previous studies by our group have shown that 3-D high-frequency quantitative ultrasound (QUS) methods have the potential to differentiate metastatic lymph nodes (LNs) from cancer-free LNs dissected from human cancer patients. To successfully perform these methods inside the LN parenchyma (LNP), an automatic segmentation method is highly desired to exclude the surrounding thin layer of fat from QUS processing and accurately correct for ultrasound attenuation. In high-frequency ultrasound images of LNs, the intensity distribution of LNP and fat varies spatially because of acoustic attenuation and focusing effects. Thus, the intensity contrast between two object regions (e.g., LNP and fat) is also spatially varying. In our previous work, nested graph cut (GC) demonstrated its ability to simultaneously segment LNP, fat, and the outer phosphate-buffered saline bath even when some boundaries are lost because of acoustic attenuation and focusing effects. This paper describes a novel approach called GC with locally adaptive energy to further deal with spatially varying distributions of LNP and fat caused by inhomogeneous acoustic attenuation. The proposed method achieved Dice similarity coefficients of 0.937±0.035 when compared with expert manual segmentation on a representative data set consisting of 115 3-D LN images obtained from colorectal cancer patients.
先前本团队的研究表明,三维高频定量超声(QUS)方法具有从人类癌症患者切除的无癌淋巴结(LN)中区分转移性 LN 的潜力。为了在 LN 实质(LNP)内成功执行这些方法,非常需要一种自动分割方法,以从 QUS 处理中排除周围的薄层脂肪,并准确地校正超声衰减。在 LN 的高频超声图像中,由于声衰减和聚焦效应,LNP 和脂肪的强度分布在空间上是不同的。因此,两个物体区域(例如 LNP 和脂肪)之间的强度对比度也是空间变化的。在我们之前的工作中,嵌套图割(GC)证明了其能够同时分割 LNP、脂肪和外部磷酸盐缓冲盐水浴的能力,即使由于声衰减和聚焦效应而丢失了一些边界。本文描述了一种称为具有局部自适应能量的 GC 的新方法,以进一步处理由不均匀声衰减引起的 LNP 和脂肪的空间变化分布。与专家手动分割相比,该方法在由结直肠癌患者获得的 115 个 3D LN 图像组成的代表性数据集上达到了 0.937±0.035 的 Dice 相似系数。