Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
RIKEN SPring-8 Center, 1-1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo, 679-5248, Japan.
Sci Rep. 2017 Aug 10;7(1):7739. doi: 10.1038/s41598-017-08019-5.
Wnt signaling plays an important role in governing cell fate decisions. Coiled-coil-DIX1 (Ccd1), Dishevelled (Dvl), and Axin are signaling proteins that regulate the canonical pathway by controlling the stability of a key signal transducer β-catenin. These proteins contain the DIX domain with a ubiquitin-like fold, which mediates their interaction in the β-catenin destruction complex through dynamic head-to-tail polymerization. Despite high sequence similarities, mammalian Ccd1 shows weaker stimulation of β-catenin transcriptional activity compared with zebrafish (z) Ccd1 in cultured cells. Here, we show that the mouse (m) Ccd1 DIX domain displays weaker ability for homopolymerization than that of zCcd1. Furthermore, X-ray crystallographic analysis of mCcd1 and zCcd1 DIX domains revealed that mCcd1 was assembled into a double-helical filament by the insertion of the β1-β2 loop into the head-to-tail interface, whereas zCcd1 formed a typical single-helical polymer similar to Dvl1 and Axin. The mutation in the contact interface of mCcd1 double-helical polymer changed the hydrodynamic properties of mCcd1 so that it acquired the ability to induce Wnt-specific transcriptional activity similar to zCcd1. These findings suggest a novel regulatory mechanism by which mCcd1 modulates Wnt signaling through auto-inhibition of dynamic head-to-tail homopolymerization.
Wnt 信号通路在调控细胞命运决定中起着重要作用。卷曲螺旋域蛋白 1(Ccd1)、Dishevelled(Dvl)和 Axin 是信号蛋白,通过控制关键信号转导蛋白β-连环蛋白的稳定性来调节经典途径。这些蛋白含有 DIX 结构域,具有泛素样折叠,通过动态的头尾聚合介导它们在β-连环蛋白降解复合物中的相互作用。尽管哺乳动物 Ccd1 和斑马鱼(z)Ccd1 具有高度的序列相似性,但在培养细胞中,mCcd1 对β-连环蛋白转录活性的刺激作用弱于 zCcd1。在这里,我们显示小鼠(m)Ccd1 的 DIX 结构域具有比 zCcd1 更弱的同聚物形成能力。此外,mCcd1 和 zCcd1 DIX 结构域的 X 射线晶体学分析表明,mCcd1 通过将β1-β2 环插入头尾界面,组装成双链螺旋丝,而 zCcd1 形成典型的单链聚合物,类似于 Dvl1 和 Axin。mCcd1 双链螺旋聚合物接触界面的突变改变了 mCcd1 的流体力学特性,使其获得了诱导 Wnt 特异性转录活性的能力,类似于 zCcd1。这些发现表明了一种新的调控机制,即 mCcd1 通过自动抑制动态的头尾同聚物化来调节 Wnt 信号通路。