Faculty of Chemistry, Bielefeld University, Bielefeld, Germany.
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom.
J Chem Phys. 2016 Dec 7;145(21):211915. doi: 10.1063/1.4962355.
Liquid water can persist in a supercooled state to below 238 K in the Earth's atmosphere, a temperature range where homogeneous nucleation becomes increasingly probable. However, the rate of homogeneous ice nucleation in supercooled water is poorly constrained, in part, because supercooled water eludes experimental scrutiny in the region of the homogeneous nucleation regime where it can exist only fleetingly. Here we present a new parameterization of the rate of homogeneous ice nucleation based on classical nucleation theory. In our approach, we constrain the key terms in classical theory, i.e., the diffusion activation energy and the ice-liquid interfacial energy, with physically consistent parameterizations of the pertinent quantities. The diffusion activation energy is related to the translational self-diffusion coefficient of water for which we assess a range of descriptions and conclude that the most physically consistent fit is provided by a power law. The other key term is the interfacial energy between the ice embryo and supercooled water whose temperature dependence we constrain using the Turnbull correlation, which relates the interfacial energy to the difference in enthalpy between the solid and liquid phases. The only adjustable parameter in our model is the absolute value of the interfacial energy at one reference temperature. That value is determined by fitting this classical model to a selection of laboratory homogeneous ice nucleation data sets between 233.6 K and 238.5 K. On extrapolation to temperatures below 233 K, into a range not accessible to standard techniques, we predict that the homogeneous nucleation rate peaks between about 227 and 231 K at a maximum nucleation rate many orders of magnitude lower than previous parameterizations suggest. This extrapolation to temperatures below 233 K is consistent with the most recent measurement of the ice nucleation rate in micrometer-sized droplets at temperatures of 227-232 K on very short time scales using an X-ray laser technique. In summary, we present a new physically constrained parameterization for homogeneous ice nucleation which is consistent with the latest literature nucleation data and our physical understanding of the properties of supercooled water.
液态水在地球大气中可处于过冷状态,温度可低至 238 K 以下,在这个温度范围内,均相成核变得越来越有可能。然而,过冷水中均相冰核形成的速率受到很大限制,部分原因是在均相成核区,过冷水很难被实验观察到,因为它只能短暂存在。本文我们提出了一个基于经典成核理论的新的均相冰核形成速率参数化方案。在我们的方法中,我们通过对相关参数进行物理一致的参数化来约束经典理论中的关键项,即扩散激活能和冰-液界面能。扩散激活能与水的平移自扩散系数有关,我们评估了一系列描述方法,得出最符合物理实际的拟合是由幂律给出的。另一个关键项是冰晶胚胎与过冷水之间的界面能,我们使用 Turnbull 相关关系来约束其与固液两相焓差的关系,从而对其温度依赖性进行约束。我们模型中唯一可调的参数是参考温度下界面能的绝对值。该值通过将该经典模型拟合到一系列实验室均相冰核形成数据集中来确定,这些数据集的温度范围在 233.6 K 到 238.5 K 之间。在对低于 233 K 的温度进行外推时,我们预测到均相成核率在 227 到 231 K 之间达到峰值,其最大成核率比以前的参数化方案所建议的低几个数量级。这种对低于 233 K 的温度的外推与使用 X 射线激光技术在 227-232 K 的极短时间尺度上对微滴中冰核形成率的最新测量结果一致。总之,我们提出了一种新的物理约束均相冰核形成参数化方案,该方案与最新文献中的成核数据以及我们对过冷水性质的物理理解一致。