School of Chemistry and Chemical Engineering, Shanxi University , Wucheng Road 92, Taiyuan 030006, China.
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences , Taoyuan South Road 27, Taiyuan 030001, China.
Langmuir. 2017 Sep 12;33(36):9025-9033. doi: 10.1021/acs.langmuir.7b01702. Epub 2017 Aug 28.
We develop a novel protocol to prepare smart, gas/water interface-active, mesoporous silica particles. This protocol involves modification of highly mesoporous silicas with a mixture of hydrophobic octyl organosilane and hydrophilic triamine organosilane. Their structure and compositions are characterized by transmission electron microscopy (TEM), N sorption, solid state NMR, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FT-IR), thermogravimetric analysis (TGA), and elemental analysis. It is demonstrated that our protocol enables the interface activity of mesoporous silica particles to be facilely tuned, so that the stable gas-water interfaces ranging from air bubbles dispersed in water (Pickering foam) and water droplets dispersed in air ("dry water") can be achieved, depending on the molar ratio of these two organosilanes. The "dry water" is not otherwise attainable for the analogous nonporous silica particles, indicting the uniqueness of the chosen mesoporous structures. Moreover, these particle-stabilized Pickering foams and "dry waters" can be disassembled in response to pH. Interestingly, it was found that aqueous potassium carbonate droplets stabilized by these interface-active mesoporous silica particles ("dry KCO-containing water") could automatically capture CO from a simulated flue gas with enhanced adsorption rate and adsorption capacity when compared to the aqueous potassium carbonate bulk solution. This study not only supplies a novel type of efficient, smart, gas/water interface-active mesoporous silica particles but also demonstrates an innovative application of mesoporous materials in gas adsorption.
我们开发了一种新颖的方案来制备智能的、气/水界面活性的介孔硅粒子。该方案涉及用疏水性辛基有机硅烷和亲水性三胺有机硅烷的混合物对高度介孔硅进行修饰。通过透射电子显微镜(TEM)、N 吸附、固态 NMR、X 射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)和元素分析对其结构和组成进行了表征。结果表明,我们的方案能够轻松地调节介孔硅粒子的界面活性,从而可以实现稳定的气/水界面,范围从分散在水中的气泡(Pickering 泡沫)到分散在空气中的水滴(“干水”),这取决于这两种有机硅烷的摩尔比。对于类似的无孔二氧化硅粒子,“干水”是无法获得的,这表明所选择的介孔结构具有独特性。此外,这些粒子稳定的 Pickering 泡沫和“干水”可以响应 pH 值进行拆卸。有趣的是,发现这些界面活性的介孔硅粒子稳定的碳酸钾水溶液滴(“含干 KCO 的水”)在模拟烟道气中可以自动捕获 CO,与碳酸钾水溶液相比,具有更高的吸附速率和吸附容量。本研究不仅提供了一种新型高效的、智能的、气/水界面活性的介孔硅粒子,还展示了介孔材料在气体吸附方面的创新应用。