Ali Sajjad, Fu Liu Tian, Lian Zan, Li Bo, Sheng Su Dang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.
Phys Chem Chem Phys. 2017 Aug 23;19(33):22344-22354. doi: 10.1039/c7cp03793g.
The mechanism of CO oxidation by O on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O and co-adsorption of CO and O molecules. It is found that CO binds stronger than O on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O. For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a clear description on the relationship between the defects in the support and the catalytic properties of Au and open a new avenue to develop carbon nanomaterial-based single atom catalysts for application in environmental and energy related fields.
利用密度泛函理论从理论上系统研究了在原始单壁碳纳米管(SWCNT)表面、单原子空位(m)、双原子空位(di)和斯通-威尔士缺陷(SW)上负载的单个金原子上,O对CO的氧化机理。我们确定单个金原子可以被SWCNTs上的缺陷有效捕获。SWCNTs上的缺陷可以增强负载的单个金原子的结合强度和催化活性。阐明了吸附能和电荷转移等基本方面,以分析CO和O的吸附特性以及CO和O分子的共吸附。发现在负载金的SWCNT上,CO的结合比O更强。我们清楚地证明,有缺陷的SWCNT表面促进了电子从负载的单个金原子转移到O分子。另一方面,对于原始SWCNTs,这种效应较弱。观察到由于Au(5d轨道)与相邻碳(2p轨道)原子之间的强相互作用,自旋极化态的高密度局域在费米能级区域,这影响了催化性能。此外,我们阐明了O对CO氧化的朗缪尔-欣谢尔伍德(LH)和埃利-里德(ER)机理。对于LH途径,计算得出Au/m-SWCNT和Au/di-SWCNT的限速步骤的势垒分别为0.02 eV和0.05 eV。为了再生活性位点,发生类似ER的反应以形成第二个CO分子。在Au/m-SWCNT、Au/SW-SWCNT和Au/SWCNT上观察到ER途径,其中Au/m-SWCNT的势垒较小。与先前的研究(Lu等人,《物理化学杂志C》,2009年,113卷,20156 - 20160页)比较表明,SWCNTs的曲率效应对于负载的单个金的催化性能很重要。总体而言,与原始SWCNT、SW-SWCNT和di-SWCNT相比,Au/m-SWCNT被确定为CO氧化最具活性的催化剂。我们的研究结果清楚地描述了载体中的缺陷与金的催化性能之间的关系,并为开发用于环境和能源相关领域的基于碳纳米材料的单原子催化剂开辟了一条新途径。