Suppr超能文献

基于神经网络的PID控制器的自主六旋翼飞行器视觉伺服控制

Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

作者信息

Lopez-Franco Carlos, Gomez-Avila Javier, Alanis Alma Y, Arana-Daniel Nancy, Villaseñor Carlos

机构信息

Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara C.P. 44430, Jalisco, Mexico.

Avenida Revolución 1500 Modulo "R", Colonia Universitaria, Guadalajara C.P. 44430, Jalisco, Mexico.

出版信息

Sensors (Basel). 2017 Aug 12;17(8):1865. doi: 10.3390/s17081865.

Abstract

In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

摘要

近年来,无人机(UAVs)受到了广泛关注。然而,在使用无人机时我们面临两个主要缺点:高度非线性以及在三维空间中的位置未知,因为无人机没有配备能够测量其相对于全局坐标系位置的机载传感器。在本文中,我们提出了一种伺服控制的实时实现方法,将视觉传感器与神经比例积分微分(PID)相结合,以开发一种基于六旋翼图像的视觉伺服控制(IBVS),该控制通过使用速度矢量作为参考来控制六旋翼位置,从而得知机器人的位置。这种集成需要控制算法、待控制的系统模型、传感器、硬件和软件平台以及定义明确的接口之间紧密协作,以实现实时运行,并设计具有各自通信架构的不同处理阶段。所有这些问题以及其他问题引发了这样一种观点,即实时实现可被视为一项艰巨的任务。为了展示传感器集成和控制算法在具有像相机这样有噪声传感器的高度非线性系统上解决这些问题的有效性,我们在Asctec Firefly机载计算机上进行了实验,包括仿真和实验结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c50c/5579741/271dc2835ae3/sensors-17-01865-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验