Li Guannan, Huang Haibo, Yu Bowen, Wang Yun, Tao Jiawei, Wei Yingxu, Li Shougui, Liu Zhongmin, Xu Yan, Xu Ruren
State Key Lab of Inorganic Synthesis and Preparative Chemistry , Jilin University , Changchun , 130012 , China . Email:
National Engineering Laboratory for Methanol to Olefins , Dalian National Laboratory for Clean Energy , Dalian Institute of Chemical Physics , Dalian , 116023 , China . Email:
Chem Sci. 2016 Feb 1;7(2):1582-1587. doi: 10.1039/c5sc03837e. Epub 2015 Nov 23.
Hierarchical zeolite monoliths with multimodal porosity are of paramount importance as they open up new horizons for advanced applications. So far, hierarchical zeolites based on nanotube scaffolds have never been reported. Inspired by the organization of biominerals, we have developed a novel precursor scaffolding-solid phase crystallization strategy for hierarchical zeolites with a unique nanotube scaffolding architecture and nanotube-trimodal network, where biomolecular self-assembly (BSA) provides a scaffolding blueprint. By vapor-treating Sil-1 seeded precursor scaffolds, zeolite nanotube scaffolds are self-generated, during which evolution phenomena such as segmented voids and solid bridges are observed, in agreement with the Kirkendall effect in a solid-phase crystallization system. The nanotube walls are made of intergrown single crystals rendering good mechanical stability. The inner diameter of the nanotube is tunable between 30 and 90 nm by varying the thickness of the precursor layers. Macropores enclosed by cross-linked nanotubes can be modulated by the choice of BSA. Narrow mesopores are formed by intergrown nanocrystals. Hierarchical ZSM-5 monoliths with nanotube (90 nm), micropore (0.55 nm), mesopore (2 nm) and macropore (700 nm) exhibit superior catalytic performance in the methanol-to-hydrocarbon (MTH) conversion compared to conventional ZSM-5. BSA remains intact after crystallization, allowing a higher level of organization and functionalization of the zeolite nanotube scaffolds. The current work may afford a versatile strategy for hierarchical zeolite monoliths with nanotube scaffolding architectures and a nanotube-multimodal network leading to self-supporting and active zeolite catalysts, and for applications beyond.
具有多模态孔隙率的分级沸石整体材料至关重要,因为它们为先进应用开辟了新视野。到目前为止,基于纳米管支架的分级沸石尚未见报道。受生物矿物组织的启发,我们开发了一种新颖的前驱体支架 - 固相结晶策略,用于制备具有独特纳米管支架结构和纳米管 - 三模态网络的分级沸石,其中生物分子自组装(BSA)提供了支架蓝图。通过对Sil - 1晶种前驱体支架进行气相处理,自生沸石纳米管支架,在此过程中观察到诸如分段空隙和固体桥等演化现象,这与固相结晶系统中的柯肯达尔效应一致。纳米管壁由相互生长的单晶构成,具有良好的机械稳定性。通过改变前驱体层的厚度,纳米管的内径可在30至90纳米之间调节。由交联纳米管包围的大孔可通过选择BSA进行调控。狭窄的中孔由相互生长的纳米晶体形成。具有纳米管(90纳米)、微孔(0.55纳米)、中孔(2纳米)和大孔(700纳米)的分级ZSM - 5整体材料在甲醇制烃(MTH)转化反应中表现出优于传统ZSM - 5的催化性能。结晶后BSA保持完整,这使得沸石纳米管支架能够实现更高水平的组织和功能化。当前的工作可能为具有纳米管支架结构和纳米管 - 多模态网络的分级沸石整体材料提供一种通用策略,从而制备出自支撑且活性高的沸石催化剂,并拓展其应用范围。