Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China.
ACS Appl Mater Interfaces. 2017 Aug 30;9(34):28620-28626. doi: 10.1021/acsami.7b08870. Epub 2017 Aug 15.
Probing electrodes at a nanometer scale is challenging but desirable to reveal the structural evolution of materials in electrochemical reactions. Herein, we present an atomic force microscopic method for an in situ analysis of a single Sn nanoparticle during sodiation and desodiation, which is conducted in an aprotic liquid electrolyte akin to a real electrochemical environment of the Na-ion cells. The morphological evolution of different-sized single Sn nanoparticle is visualized during the charge/discharge cycles by using a homemade planar electrode. All of the Sn nanoparticles exhibit a dramatic initial volume expansion of about 420% after sodiation to NaSn. Interestingly, we find that the smaller Sn nanoparticles show a lower rate of irreversible volume change and a better shape maintenance than the larger ones after desodiation. This finding suggests the importance of downsizing in improving the mechanical stability and the cycling performance of the Sn-based anodes in sodium-ion batteries.
在纳米尺度探测电极极具挑战性,但却有利于揭示电化学反应中材料的结构演变。在此,我们提出了一种原子力显微镜方法,用于在非质子液体电解质中对单个锡纳米颗粒在嵌入和脱嵌过程中的原位分析,该电解质类似于钠离子电池的真实电化学环境。通过使用自制的平面电极,在充放电循环过程中可视化不同尺寸的单个锡纳米颗粒的形态演变。所有锡纳米颗粒在嵌入到 NaSn 后都会经历约 420%的初始剧烈体积膨胀。有趣的是,我们发现较小的锡纳米颗粒在脱嵌后具有比较大颗粒更低的不可逆体积变化率和更好的形状保持性。这一发现表明,减小尺寸对于提高锡基钠离子电池负极的机械稳定性和循环性能非常重要。