Fukai Yuta, Ohsawa Yutaka, Ohtsubo Hideaki, Nishimatsu Shin-Ichiro, Hagiwara Hiroki, Noda Makoto, Sasaoka Toshikuni, Murakami Tatsufumi, Sunada Yoshihide
Department of Neurology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
Department of Natural Science, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
Biochem Biophys Res Commun. 2017 Oct 14;492(2):199-205. doi: 10.1016/j.bbrc.2017.08.048. Epub 2017 Aug 15.
The dystroglycan complex consists of two subunits: extracellular α-dystroglycan and membrane-spanning β-dystroglycan, which provide a tight link between the extracellular matrix and the intracellular cytoskeleton. Previous studies showed that 43 kDa β-dystroglycan is proteolytically cleaved into the 30 kDa fragment by matrix metalloproteinases (MMPs) in various non-muscle tissues, whereas it is protected from cleavage in muscles by the sarcoglycan complex which resides close to the dystroglycan complex. It is noteworthy that cleaved β-dystroglycan is detected in muscles from patients with sarcoglycanopathy, sarcoglycan-deficient muscular dystrophy. In vitro assays using protease inhibitors suggest that both MMP-2 and MMP-9 contribute to the cleavage of β-dystroglycan. However, this has remained uninvestigated in vivo.
We generated triple-knockout (TKO) mice targeting MMP-2, MMP-9 and γ-sarcoglycan to examine the status of β-dystroglycan cleavage in the absence of the candidate matrix metalloproteinases in sarcoglycan-deficient muscles.
Unexpectedly, β-dystroglycan was cleaved in muscles from TKO mice. Muscle pathology was not ameliorated but worsened in TKO mice compared with γ-sarcoglycan single-knockout mice. The gene expression of MMP-14 was up-regulated in TKO mice as well as in γ-sarcoglycan knockout mice. In vitro assay showed MMP-14 is capable to cleave β-dystroglycan.
Double-targeting of MMP-2 and MMP-9 cannot prevent cleavage of β-dystroglycan in sarcoglycanopathy. Thus, matrix metalloproteinases contributing to β-dystroglycan cleavage are redundant, and MMP-14 could participate in the pathogenesis of sarcoglycanopathy.
肌营养不良蛋白聚糖复合体由两个亚基组成:细胞外α-肌营养不良蛋白聚糖和跨膜β-肌营养不良蛋白聚糖,它们在细胞外基质和细胞内细胞骨架之间提供紧密连接。先前的研究表明,在各种非肌肉组织中,43 kDa的β-肌营养不良蛋白聚糖被基质金属蛋白酶(MMPs)蛋白水解切割成30 kDa的片段,而在肌肉中,它受到位于肌营养不良蛋白聚糖复合体附近的肌聚糖复合体的保护而不被切割。值得注意的是,在肌聚糖病(肌聚糖缺乏性肌营养不良)患者的肌肉中检测到了切割后的β-肌营养不良蛋白聚糖。使用蛋白酶抑制剂的体外试验表明,MMP-2和MMP-9都参与了β-肌营养不良蛋白聚糖的切割。然而,这一点在体内尚未得到研究。
我们构建了靶向MMP-2、MMP-9和γ-肌聚糖的三基因敲除(TKO)小鼠,以研究在肌聚糖缺乏的肌肉中缺乏候选基质金属蛋白酶时β-肌营养不良蛋白聚糖的切割状态。
出乎意料的是,TKO小鼠的肌肉中β-肌营养不良蛋白聚糖被切割。与γ-肌聚糖单基因敲除小鼠相比,TKO小鼠的肌肉病理学并未改善反而恶化。MMP-14的基因表达在TKO小鼠以及γ-肌聚糖基因敲除小鼠中均上调。体外试验表明MMP-14能够切割β-肌营养不良蛋白聚糖。
同时靶向MMP-2和MMP-9并不能预防肌聚糖病中β-肌营养不良蛋白聚糖的切割。因此,可以切割β-肌营养不良蛋白聚糖的基质金属蛋白酶是冗余的,并且MMP-14可能参与了肌聚糖病的发病机制。