Maiβer Anne, Hogan Christopher J
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
The Cyprus Institute, Aglandjia, Cyprus.
Chemphyschem. 2017 Nov 3;18(21):3039-3046. doi: 10.1002/cphc.201700747. Epub 2017 Sep 18.
We utilize ion mobility mass spectrometry with an atmospheric pressure differential mobility analyzer coupled to a time-of-flight mass spectrometer (DMA-MS) to examine the formation of ion-vapor molecule complexes with seed ions of K , Rb , Cs , Br , and I exposed to n-butanol and n-nonane vapor under subsaturated conditions. Ion-vapor molecule complex formation is indicated by a shift in the apparent mobility of each ion. Measurement results are compared to predicted mobility shifts based upon the Kelvin-Thomson equation, which is commonly used in predicting rates of ion-induced nucleation. We find that n-butanol at saturation ratios as low as 0.03 readily binds to all seed ions, leading to mobility shifts in excess of 35 %. Conversely, the binding of n-nonane is not detectable for any ion for saturation ratios in the 0-0.27 range. An inverse correlation between the ionic radius of the initial seed and the extent of n-butanol uptake is observed, such that at elevated n-butanol concentrations, the smallest ion (K ) has the smallest apparent mobility and the largest (I ) has the largest apparent mobility. Though the differences in behavior of the two vapor molecules types examined and the observed effect of ionic seed radius are not accounted for by the Kelvin-Thomson equation, its predictions are in good agreement with measured mobility shifts for Rb , Cs , and Br in the presence of n-butanol (typically within 10 % of measurements).
我们使用带有常压差示迁移率分析仪的离子迁移率质谱仪与飞行时间质谱仪联用(DMA-MS),来研究在不饱和条件下,K⁺、Rb⁺、Cs⁺、Br⁻和I⁻的种子离子与正丁醇和正壬烷蒸汽形成离子 - 蒸汽分子复合物的情况。离子 - 蒸汽分子复合物的形成通过每个离子表观迁移率的变化来指示。测量结果与基于开尔文 - 汤姆逊方程预测的迁移率变化进行比较,该方程通常用于预测离子诱导成核的速率。我们发现,饱和比低至0.03的正丁醇很容易与所有种子离子结合,导致迁移率变化超过35%。相反,在0 - 0.27范围内的任何离子,对于正壬烷的结合均未检测到。观察到初始种子离子的离子半径与正丁醇摄取程度之间呈负相关,即在正丁醇浓度升高时,最小的离子(K⁺)具有最小的表观迁移率,而最大的离子(I⁻)具有最大的表观迁移率。尽管所研究的两种蒸汽分子类型行为的差异以及观察到的离子种子半径的影响不能由开尔文 - 汤姆逊方程解释,但其预测结果与在正丁醇存在下Rb⁺、Cs⁺和Br⁻的测量迁移率变化高度吻合(通常在测量值的10%以内)。