Suppr超能文献

基于隐马尔可夫模型利用制动特性的驾驶风格识别方法

Driving style recognition method using braking characteristics based on hidden Markov model.

作者信息

Deng Chao, Wu Chaozhong, Lyu Nengchao, Huang Zhen

机构信息

Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan, Hubei, China.

Engineering Research Center for Transportation Safety, Wuhan University of Technology, Wuhan, Hubei, China.

出版信息

PLoS One. 2017 Aug 24;12(8):e0182419. doi: 10.1371/journal.pone.0182419. eCollection 2017.

Abstract

Since the advantage of hidden Markov model in dealing with time series data and for the sake of identifying driving style, three driving style (aggressive, moderate and mild) are modeled reasonably through hidden Markov model based on driver braking characteristics to achieve efficient driving style. Firstly, braking impulse and the maximum braking unit area of vacuum booster within a certain time are collected from braking operation, and then general braking and emergency braking characteristics are extracted to code the braking characteristics. Secondly, the braking behavior observation sequence is used to describe the initial parameters of hidden Markov model, and the generation of the hidden Markov model for differentiating and an observation sequence which is trained and judged by the driving style is introduced. Thirdly, the maximum likelihood logarithm could be implied from the observable parameters. The recognition accuracy of algorithm is verified through experiments and two common pattern recognition algorithms. The results showed that the driving style discrimination based on hidden Markov model algorithm could realize effective discriminant of driving style.

摘要

由于隐马尔可夫模型在处理时间序列数据方面的优势,且为了识别驾驶风格,基于驾驶员制动特性,通过隐马尔可夫模型对三种驾驶风格(激进型、适中型和温和型)进行合理建模,以实现高效的驾驶风格识别。首先,从制动操作中收集一定时间内的制动冲量和真空助力器的最大制动单位面积,然后提取一般制动和紧急制动特性以对制动特性进行编码。其次,利用制动行为观察序列来描述隐马尔可夫模型的初始参数,并引入用于区分的隐马尔可夫模型的生成以及由驾驶风格进行训练和判断的观察序列。第三,从可观测参数中可以隐含出最大似然对数。通过实验和两种常见的模式识别算法验证了算法的识别准确率。结果表明,基于隐马尔可夫模型算法的驾驶风格判别能够实现对驾驶风格的有效判别。

相似文献

1
Driving style recognition method using braking characteristics based on hidden Markov model.
PLoS One. 2017 Aug 24;12(8):e0182419. doi: 10.1371/journal.pone.0182419. eCollection 2017.
2
Modeling Driver Behavior near Intersections in Hidden Markov Model.
Int J Environ Res Public Health. 2016 Dec 21;13(12):1265. doi: 10.3390/ijerph13121265.
3
Prediction of protein binding sites in protein structures using hidden Markov support vector machine.
BMC Bioinformatics. 2009 Nov 20;10:381. doi: 10.1186/1471-2105-10-381.
4
Research on Compound Braking Control Strategy of Extended-Range Electric Vehicle Based on Driving Intention Recognition.
Comput Intell Neurosci. 2022 Oct 7;2022:8382873. doi: 10.1155/2022/8382873. eCollection 2022.
5
Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.
ScientificWorldJournal. 2014;2014:270576. doi: 10.1155/2014/270576. Epub 2014 Nov 17.
7
[Braking capacity after hip arthroplasty - effect of prosthesis design and preoperative status].
Z Orthop Unfall. 2012 Oct;150(5):533-8. doi: 10.1055/s-0032-1315245. Epub 2012 Oct 17.
8
A linear memory algorithm for Baum-Welch training.
BMC Bioinformatics. 2005 Sep 19;6:231. doi: 10.1186/1471-2105-6-231.
9
A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms.
Sensors (Basel). 2015 Dec 4;15(12):30653-82. doi: 10.3390/s151229822.
10
Bayesian restoration of a hidden Markov chain with applications to DNA sequencing.
J Comput Biol. 1999 Summer;6(2):261-77. doi: 10.1089/cmb.1999.6.261.

引用本文的文献

1
A Real-Time Recognition System of Driving Propensity Based on AutoNavi Navigation Data.
Sensors (Basel). 2022 Jun 28;22(13):4883. doi: 10.3390/s22134883.
2
An Individual Driving Behavior Portrait Approach for Professional Driver of HDVs with Naturalistic Driving Data.
Comput Intell Neurosci. 2022 Jan 22;2022:3970571. doi: 10.1155/2022/3970571. eCollection 2022.
3
Risky Driver Recognition with Class Imbalance Data and Automated Machine Learning Framework.
Int J Environ Res Public Health. 2021 Jul 15;18(14):7534. doi: 10.3390/ijerph18147534.
4
Holistic Vehicle Instrumentation for Assessing Driver Driving Styles.
Sensors (Basel). 2021 Feb 18;21(4):1427. doi: 10.3390/s21041427.
6
Driving Style Recognition Based on Electroencephalography Data From a Simulated Driving Experiment.
Front Psychol. 2019 May 29;10:1254. doi: 10.3389/fpsyg.2019.01254. eCollection 2019.
7
Real-Time Traffic Risk Detection Model Using Smart Mobile Device.
Sensors (Basel). 2018 Oct 30;18(11):3686. doi: 10.3390/s18113686.
8
IoT On-Board System for Driving Style Assessment.
Sensors (Basel). 2018 Apr 17;18(4):1233. doi: 10.3390/s18041233.

本文引用的文献

1
A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms.
Sensors (Basel). 2015 Dec 4;15(12):30653-82. doi: 10.3390/s151229822.
2
Exploring the influential factors in incident clearance time: Disentangling causation from self-selection bias.
Accid Anal Prev. 2015 Dec;85:58-65. doi: 10.1016/j.aap.2015.08.024. Epub 2015 Sep 12.
3
SVM-based learning control of space robots in capturing operation.
Int J Neural Syst. 2007 Dec;17(6):467-77. doi: 10.1142/S0129065707001305.
4
Modeling and prediction of human behavior.
Neural Comput. 1999 Jan 1;11(1):229-42. doi: 10.1162/089976699300016890.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验