Chen Y H Joshua, Yuan Shuai S, Li Xiaoming
a Department of Biostatistics and Programming, Sanofi Pasteur , Swiftwater , PA , USA.
b Merck Research Laboratories, Merck & Co. , Upper Gwynedd , PA , USA.
J Biopharm Stat. 2018;28(3):575-587. doi: 10.1080/10543406.2017.1372766. Epub 2017 Oct 17.
Sample size adjustment at an interim analysis can mitigate the risk of failing to meet the study objective due to lower-than-expected treatment effect. Without modification to the conventional statistical methods, the type I error rate will be inflated, primarily caused by increasing sample size when the interim observed treatment effect is close to null or no treatment effect. Modifications to the conventional statistical methods, such as changing critical values or using weighted test statistics, have been proposed to address primarily such a scenario at the cost of flexibility or interpretability. In reality, increasing sample size when interim results indicate no or very small treatment effect could unnecessarily waste limited resource on an ineffective drug candidate. Such considerations lead to the recently increased interest in sample size adjustment based on promising interim results. The 50% conditional power principle allows sample size increase only when the unblinded interim results are promising or the conditional power is greater than 50%. The conventional unweighted test statistics and critical values can be used without inflation of type I error rate. In this paper, statistical inference following such a design is assessed. As shown in the numerical study, the bias of the conventional maximum likelihood estimate (MLE) and coverage error of its conventional confidence interval are generally small following sample size adjustment. We recommend use of conventional, MLE-based statistical inference when applying the 50% conditional power principle for sample size adjustment. In such a way, consistent statistics will be used in both hypothesis test and statistical inference.
在中期分析时进行样本量调整,可以降低因治疗效果低于预期而无法实现研究目标的风险。在不修改传统统计方法的情况下,I型错误率将会升高,这主要是由于在中期观察到的治疗效果接近无效或无治疗效果时增加样本量所致。有人提出修改传统统计方法,如改变临界值或使用加权检验统计量,主要是为了解决这种情况,但会牺牲灵活性或可解释性。实际上,当中期结果显示无治疗效果或治疗效果非常小时增加样本量,可能会在一种无效的候选药物上不必要地浪费有限的资源。这些考虑因素导致最近人们对基于有前景的中期结果进行样本量调整的兴趣增加。50%条件把握度原则允许仅在未盲法的中期结果有前景或条件把握度大于50%时增加样本量。可以使用传统的非加权检验统计量和临界值,而不会使I型错误率升高。在本文中,对遵循这种设计的统计推断进行了评估。如数值研究所示,在样本量调整后,传统最大似然估计(MLE)的偏差及其传统置信区间的覆盖误差通常较小。我们建议在应用50%条件把握度原则进行样本量调整时,使用基于传统MLE的统计推断。通过这种方式,在假设检验和统计推断中都将使用一致的统计量。