Zhang Yuan, Li Liang, Han Qiutong, Tang Lanqin, Chen Xingyu, Hu Jianqiang, Li Zhaosheng, Zhou Yong, Liu Junming, Zou Zhigang
School of Physics, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing, 210093, P. R. China.
Chemphyschem. 2017 Nov 17;18(22):3240-3244. doi: 10.1002/cphc.201700655. Epub 2017 Aug 29.
A three-dimensional Bi MoO nanostrip architecture was synthesized by the hydrothermal method using sodium oleate as a surfactant. The generated Bi MoO nanostrips intercross with each other to form a unique network structure with a band gap of 2.92 eV, corresponding to visible-light wavelength. Time-evolution experiments reveal the formation mechanism of the Bi MoO network. The photocatalytic reduction of CO to CH catalyzed by the Bi MoO architecture was evaluated and compared with the process catalyzed by a Bi MoO nanoplate analogue synthesized in the absence of sodium oleate as well as with the solid-state reaction. The Bi MoO nanostrips exhibit the best photocatalytic activity, which can be attributed to their high specific surface area, high light-absorption intensity, suitable thickness for fast charge-carrier migration, and the presence of pores for reactant transport.
采用水热法,以油酸钠为表面活性剂合成了三维Bi₂MoO₆纳米带结构。生成的Bi₂MoO₆纳米带相互交叉,形成独特的网络结构,其带隙为2.92 eV,对应可见光波长。时间演化实验揭示了Bi₂MoO₆网络的形成机制。对Bi₂MoO₆结构催化CO光催化还原为CH₄的过程进行了评估,并与在无油酸钠条件下合成的Bi₂MoO₆纳米板类似物催化的过程以及固态反应进行了比较。Bi₂MoO₆纳米带表现出最佳的光催化活性,这可归因于其高比表面积、高光吸收强度、适合快速电荷载流子迁移的厚度以及存在用于反应物传输的孔隙。