Mutisya Daniel, Hardcastle Travis, Cheruiyot Samwel K, Pallan Pradeep S, Kennedy Scott D, Egli Martin, Kelley Melissa L, Smith Anja van Brabant, Rozners Eriks
Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA.
GE Healthcare Dharmacon, Lafayette, CO 80026, USA.
Nucleic Acids Res. 2017 Aug 21;45(14):8142-8155. doi: 10.1093/nar/gkx558.
While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA-DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs.
虽然RNA干扰(RNAi)在分子生物学和功能基因组学中的应用是一项成熟的技术,但合成短干扰RNA(siRNA)的体内应用需要化学修饰。我们最近发现,酰胺作为磷酸二酯的非离子替代物,可能是优化siRNA的有用修饰。在此,我们报告了一项全面的研究,即在siRNA的引导链中用酰胺键系统地替代单个磷酸酯。结果表明,酰胺在引导链的种子区和中心区具有惊人的耐受性,并且当置于引导链10至12位核苷酸之间(即Argonaute的催化位点)时,会增加沉默活性。通过酰胺修饰的RNA-DNA与嗜碱芽孢杆菌RNase H1的首个晶体结构提供了一种可能的解释。该结构揭示了RNA和蛋白质构象的微小变化如何使酰胺与蛋白质建立氢键相互作用。分子动力学模拟表明,这些替代结合模式可能补偿由于缺乏磷酸二酯部分而失去的相互作用。我们的结果表明,酰胺可以模拟RNAi活性所需的与蛋白质的重要氢键相互作用,并且可能是优化siRNA生物学特性的一种有前途的修饰。