Suppr超能文献

2015年查尔斯·F·普伦蒂斯奖章获奖讲座:双眼视觉的神经组织

2015 Charles F. Prentice Medal Award Lecture: Neural Organization of Binocular Vision.

作者信息

Freeman Ralph D

机构信息

University of California, Berkeley School of Optometry, Berkeley, CA *

出版信息

Optom Vis Sci. 2017 Oct;94(10):931-938. doi: 10.1097/OPX.0000000000001116.

Abstract

During a Research Career Development Award from the National Eye Institute, I spent a year at the University of Cambridge doing research with John Robson. The goal was to use a visual stimulation approach that had not been previously attempted, with the intention of exploring fundamental organization principles of the neural basis of binocular vision. The idea was to use sinusoidal gratings that drifted before both eyes such that the relative phase for one eye was fixed while that of the other was varied. This provided binocular stimuli of variable relative phase, i.e. retinal disparity, to enable testing of binocular response characteristics. We were able to obtain different types of disparity tuning functions for neurons in the primary visual cortex. This work, followed by extended investigations in Berkeley, provided basic information regarding response characteristics of simple and complex cells. We have also shown for monocular deprivation, an approximate model for human amblyopia, that many neurons remain connected to the deprived eye, as demonstrated with dichoptic activation. A selected portion of this work is described here.

摘要

在获得国家眼科研究所的研究职业发展奖期间,我在剑桥大学与约翰·罗布森一起进行了为期一年的研究。目标是采用一种此前未尝试过的视觉刺激方法,旨在探索双眼视觉神经基础的基本组织原则。想法是使用在两只眼睛前漂移的正弦光栅,使得一只眼睛的相对相位固定,而另一只眼睛的相对相位变化。这提供了可变相对相位的双眼刺激,即视网膜视差,以能够测试双眼反应特性。我们能够获得初级视觉皮层中神经元的不同类型的视差调谐函数。这项工作之后在伯克利进行了深入研究,提供了关于简单细胞和复杂细胞反应特性的基本信息。我们还针对单眼剥夺(人类弱视的一种近似模型)表明,如通过双眼分离激活所证明的,许多神经元仍与被剥夺的眼睛相连。这里描述了这项工作的一部分。

相似文献

1
2015 Charles F. Prentice Medal Award Lecture: Neural Organization of Binocular Vision.
Optom Vis Sci. 2017 Oct;94(10):931-938. doi: 10.1097/OPX.0000000000001116.
2
Development of binocular vision in the kitten's striate cortex.
J Neurosci. 1992 Dec;12(12):4721-36. doi: 10.1523/JNEUROSCI.12-12-04721.1992.
3
Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision.
J Neurophysiol. 1997 Sep;78(3):1353-62. doi: 10.1152/jn.1997.78.3.1353.
4
Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation.
Vision Res. 2015 Sep;114:151-60. doi: 10.1016/j.visres.2014.12.012. Epub 2014 Dec 20.
5
Binocular phase interactions in area 21a of the cat.
J Physiol. 1999 Jan 15;514 ( Pt 2)(Pt 2):541-9. doi: 10.1111/j.1469-7793.1999.541ae.x.
6
Contrast gain control in the visual cortex: monocular versus binocular mechanisms.
J Neurosci. 2000 Apr 15;20(8):3017-32. doi: 10.1523/JNEUROSCI.20-08-03017.2000.
7
Monocular deprivation reduces reliability of visual cortical responses to binocular disparity stimuli.
Eur J Neurosci. 2007 Dec;26(12):3553-63. doi: 10.1111/j.1460-9568.2007.05946.x. Epub 2007 Dec 4.
8
Binocular spatial phase tuning characteristics of neurons in the macaque striate cortex.
J Neurophysiol. 1997 Jul;78(1):351-65. doi: 10.1152/jn.1997.78.1.351.
9
Binocular interactions in area 21a of the cat.
Neuroreport. 1999 Aug 2;10(11):2241-4. doi: 10.1097/00001756-199908020-00003.
10
Binocular Modulation of Monocular V1 Neurons.
Curr Biol. 2019 Feb 4;29(3):381-391.e4. doi: 10.1016/j.cub.2018.12.004. Epub 2019 Jan 17.

引用本文的文献

1
The role of binocular vision in the control and development of visually guided upper limb movements.
Philos Trans R Soc Lond B Biol Sci. 2023 Jan 30;378(1869):20210461. doi: 10.1098/rstb.2021.0461. Epub 2022 Dec 13.
2
Binocular response modulation in the lateral geniculate nucleus.
J Comp Neurol. 2019 Feb 15;527(3):522-534. doi: 10.1002/cne.24417. Epub 2018 Mar 9.

本文引用的文献

1
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
2
Contrast gain control in the visual cortex: monocular versus binocular mechanisms.
J Neurosci. 2000 Apr 15;20(8):3017-32. doi: 10.1523/JNEUROSCI.20-08-03017.2000.
3
Neural mechanisms for encoding binocular disparity: receptive field position versus phase.
J Neurophysiol. 1999 Aug;82(2):874-90. doi: 10.1152/jn.1999.82.2.874.
4
Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision.
J Neurophysiol. 1997 Sep;78(3):1353-62. doi: 10.1152/jn.1997.78.3.1353.
5
Encoding of binocular disparity by complex cells in the cat's visual cortex.
J Neurophysiol. 1997 Jun;77(6):2879-909. doi: 10.1152/jn.1997.77.6.2879.
6
Neural mechanisms underlying binocular fusion and stereopsis: position vs. phase.
Proc Natl Acad Sci U S A. 1997 May 13;94(10):5438-43. doi: 10.1073/pnas.94.10.5438.
7
Encoding of binocular disparity by simple cells in the cat's visual cortex.
J Neurophysiol. 1996 May;75(5):1779-805. doi: 10.1152/jn.1996.75.5.1779.
8
Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey.
J Physiol. 1981 Jun;315:469-92. doi: 10.1113/jphysiol.1981.sp013759.
9
The neural mechanism of binocular depth discrimination.
J Physiol. 1967 Nov;193(2):327-42. doi: 10.1113/jphysiol.1967.sp008360.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验