Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
J Chem Phys. 2017 Aug 28;147(8):084101. doi: 10.1063/1.4999423.
Full configuration interaction (FCI) restricted to a pairing space yields size-extensive correlation energies but its cost scales exponentially with molecular size. Restricting the variational two-electron reduced-density-matrix (2-RDM) method to represent the same pairing space yields an accurate lower bound to the pair FCI energy at a mean-field-like computational scaling of O(r) where r is the number of orbitals. In this paper, we show that localized molecular orbitals can be employed to generate an efficient, approximately size-extensive pair 2-RDM method. The use of localized orbitals eliminates the substantial cost of optimizing iteratively the orbitals defining the pairing space without compromising accuracy. In contrast to the localized orbitals, the use of canonical Hartree-Fock molecular orbitals is shown to be both inaccurate and non-size-extensive. The pair 2-RDM has the flexibility to describe the spectra of one-electron RDM occupation numbers from all quantum states that are invariant to time-reversal symmetry. Applications are made to hydrogen chains and their dissociation, n-acene from naphthalene through octacene, and cadmium telluride 2-, 3-, and 4-unit polymers. For the hydrogen chains, the pair 2-RDM method recovers the majority of the energy obtained from similar calculations that iteratively optimize the orbitals. The localized-orbital pair 2-RDM method with its mean-field-like computational scaling and its ability to describe multi-reference correlation has important applications to a range of strongly correlated phenomena in chemistry and physics.
全组态相互作用(FCI)限制在配对空间中会产生大小扩展性相关能量,但它的成本随分子大小呈指数级增长。将变分双电子约化密度矩阵(2-RDM)方法限制在相同的配对空间中,以在类似于平均场的计算尺度 O(r) 下表示对 FCI 能量的准确下限,其中 r 是轨道数。在本文中,我们表明可以使用局域分子轨道来生成高效、近似大小扩展性的对 2-RDM 方法。使用局域轨道可以消除迭代优化定义配对空间的轨道的大量成本,而不会牺牲准确性。与局域轨道相反,使用规范 Hartree-Fock 分子轨道既不准确也不是大小扩展性的。对 2-RDM 具有灵活性,可以描述所有不变对时间反转对称性的单电子 RDM 占据数的谱。应用于氢链及其解离、萘到八烯的 n-葸、以及碲化镉 2-、3-和 4-单元聚合物。对于氢链,对 2-RDM 方法恢复了从类似计算中迭代优化轨道获得的大部分能量。具有类似于平均场的计算尺度和描述多参考相关能力的局域轨道对 2-RDM 方法对化学和物理中一系列强关联现象具有重要应用。