Suppr超能文献

基于小波的动态网络可视化分析

Wavelet-Based Visual Analysis of Dynamic Networks.

作者信息

Col Alcebiades Dal, Valdivia Paola, Petronetto Fabiano, Dias Fabio, Silva Claudio T, Nonato L Gustavo

出版信息

IEEE Trans Vis Comput Graph. 2018 Aug;24(8):2456-2469. doi: 10.1109/TVCG.2017.2746080. Epub 2017 Aug 29.

Abstract

Dynamic networks naturally appear in a multitude of applications from different fields. Analyzing and exploring dynamic networks in order to understand and detect patterns and phenomena is challenging, fostering the development of new methodologies, particularly in the field of visual analytics. In this work, we propose a novel visual analytics methodology for dynamic networks, which relies on the spectral graph wavelet theory. We enable the automatic analysis of a signal defined on the nodes of the network, making viable the robust detection of network properties. Specifically, we use a fast approximation of a graph wavelet transform to derive a set of wavelet coefficients, which are then used to identify activity patterns on large networks, including their temporal recurrence. The coefficients naturally encode the spatial and temporal variations of the signal, leading to an efficient and meaningful representation. This methodology allows for the exploration of the structural evolution of the network and their patterns over time. The effectiveness of our approach is demonstrated using usage scenarios and comparisons involving real dynamic networks.

摘要

动态网络自然地出现在来自不同领域的大量应用中。分析和探索动态网络以理解和检测模式及现象具有挑战性,这推动了新方法的发展,特别是在视觉分析领域。在这项工作中,我们提出了一种用于动态网络的新颖视觉分析方法,该方法依赖于谱图小波理论。我们能够对定义在网络节点上的信号进行自动分析,从而实现对网络属性的稳健检测。具体而言,我们使用图小波变换的快速近似来导出一组小波系数,然后使用这些系数来识别大型网络上的活动模式,包括它们的时间重现。这些系数自然地编码了信号的空间和时间变化,从而产生高效且有意义的表示。这种方法允许探索网络的结构演变及其随时间的模式。我们通过使用涉及实际动态网络的使用场景和比较来证明我们方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验