From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL (K.A.M., J.M., A.V., M.J., C.M., A.B., A.B.-S., S.D., A.L.); and Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (W.J.K.).
Hypertension. 2017 Nov;70(5):972-981. doi: 10.1161/HYPERTENSIONAHA.117.09817. Epub 2017 Sep 5.
Heart failure is the leading cause of death in the Western world, and new and innovative treatments are needed. The GPCR (G protein-coupled receptor) adapter proteins βarr (β-arrestin)-1 and βarr-2 are functionally distinct in the heart. βarr1 is cardiotoxic, decreasing contractility by opposing βAR (adrenergic receptor) signaling and promoting apoptosis/inflammation post-myocardial infarction (MI). Conversely, βarr2 inhibits apoptosis/inflammation post-MI but its effects on cardiac function are not well understood. Herein, we sought to investigate whether βarr2 actually increases cardiac contractility. Via proteomic investigations in transgenic mouse hearts and in H9c2 rat cardiomyocytes, we have uncovered that βarr2 directly interacts with SERCA2a (sarco[endo]plasmic reticulum Ca-ATPase) in vivo and in vitro in a βAR-dependent manner. This interaction causes acute SERCA2a SUMO (small ubiquitin-like modifier)-ylation, increasing SERCA2a activity and thus, cardiac contractility. βarr1 lacks this effect. Moreover, βarr2 does not desensitize βAR cAMP-dependent procontractile signaling in cardiomyocytes, again contrary to βarr1. In vivo, post-MI heart failure mice overexpressing cardiac βarr2 have markedly improved cardiac function, apoptosis, inflammation, and adverse remodeling markers, as well as increased SERCA2a SUMOylation, levels, and activity, compared with control animals. Notably, βarr2 is capable of ameliorating cardiac function and remodeling post-MI despite not increasing cardiac βAR number or cAMP levels in vivo. In conclusion, enhancement of cardiac βarr2 levels/signaling via cardiac-specific gene transfer augments cardiac function safely, that is, while attenuating post-MI remodeling. Thus, cardiac βarr2 gene transfer might be a novel, safe positive inotropic therapy for both acute and chronic post-MI heart failure.
心力衰竭是西方世界的主要死亡原因,因此需要新的创新治疗方法。GPCR(G 蛋白偶联受体)衔接蛋白βarr(β-抑制蛋白)-1 和 βarr-2 在心脏中具有不同的功能。βarr1 具有心脏毒性,通过拮抗βAR(肾上腺素能受体)信号和促进心肌梗死后的细胞凋亡/炎症来降低收缩性。相反,βarr2 抑制心肌梗死后的细胞凋亡/炎症,但它对心脏功能的影响尚不清楚。在此,我们试图研究βarr2 是否实际上增加了心脏的收缩性。通过对转基因小鼠心脏和 H9c2 大鼠心肌细胞的蛋白质组学研究,我们发现βarr2 在体内和体外以βAR 依赖性的方式直接与 SERCA2a(肌浆网 Ca-ATP 酶)相互作用。这种相互作用导致 SERCA2a 的急性 SUMO(小泛素样修饰蛋白)化,增加 SERCA2a 的活性,从而增加心脏的收缩性。βarr1 则缺乏这种作用。此外,βarr2 不会使心肌细胞中的βAR cAMP 依赖性促收缩信号脱敏,这与βarr1 再次相反。在体内,过表达心脏βarr2 的心肌梗死后心力衰竭小鼠与对照动物相比,心脏功能、细胞凋亡、炎症和不良重构标志物显著改善,SERCA2a SUMO 化水平、活性和水平增加。值得注意的是,βarr2 能够改善心肌梗死后的心脏功能和重构,尽管它不会增加体内的心脏βAR 数量或 cAMP 水平。总之,通过心脏特异性基因转移增强心脏βarr2 的水平/信号传递可以安全地增强心脏功能,即减轻心肌梗死后的重构。因此,心脏βarr2 基因转移可能是一种新的、安全的、用于治疗急性和慢性心肌梗死后心力衰竭的正性变力治疗方法。