Suppr超能文献

甲烷八叠球菌球形病毒,一种靶向甲烷八叠球菌菌株的新型古菌裂解病毒。

Methanosarcina Spherical Virus, a Novel Archaeal Lytic Virus Targeting Methanosarcina Strains.

作者信息

Weidenbach Katrin, Nickel Lisa, Neve Horst, Alkhnbashi Omer S, Künzel Sven, Kupczok Anne, Bauersachs Thorsten, Cassidy Liam, Tholey Andreas, Backofen Rolf, Schmitz Ruth A

机构信息

Christian Albrechts University, Institute for General Microbiology, Kiel, Germany.

Max Rubner Institute, Department of Microbiology and Biotechnology, Kiel, Germany.

出版信息

J Virol. 2017 Oct 27;91(22). doi: 10.1128/JVI.00955-17. Print 2017 Nov 15.

Abstract

A novel archaeal lytic virus targeting species of the genus was isolated using strain Gö1 as the host. Due to its spherical morphology, the virus was designated hanosarcina pherical irus (MetSV). Molecular analysis demonstrated that MetSV contains double-stranded linear DNA with a genome size of 10,567 bp containing 22 open reading frames (ORFs), all oriented in the same direction. Functions were predicted for some of these ORFs, i.e., such as DNA polymerase, ATPase, and DNA-binding protein as well as envelope (structural) protein. MetSV-derived spacers in CRISPR loci were detected in several published draft genomes using bioinformatic tools, revealing a potential protospacer-adjacent motif (PAM) motif (TTA/T). Transcription and expression of several predicted viral ORFs were validated by reverse transcription-PCR (RT-PCR), PAGE analysis, and liquid chromatography-mass spectrometry (LC-MS)-based proteomics. Analysis of core lipids by atmospheric pressure chemical ionization (APCI) mass spectrometry showed that MetSV and both contain archaeol and glycerol dialkyl glycerol tetraether without a cyclopentane moiety (GDGT-0). The MetSV host range is limited to strains growing as single cells (, and ). In contrast, strains growing as sarcina-like aggregates were apparently protected from infection. Heterogeneity related to morphology phases in cultures allowed acquisition of resistance to MetSV after challenge by growing cultures as sarcina-like aggregates. CRISPR/Cas-mediated resistance was excluded since neither of the two CRISPR arrays showed MetSV-derived spacer acquisition. Based on these findings, we propose that changing the morphology from single cells to sarcina-like aggregates upon rearrangement of the envelope structure prevents infection and subsequent lysis by MetSV. Methanoarchaea are among the most abundant organisms on the planet since they are present in high numbers in major anaerobic environments. They convert various carbon sources, e.g., acetate, methylamines, or methanol, to methane and carbon dioxide; thus, they have a significant impact on the emission of major greenhouse gases. Today, very little is known about viruses specifically infecting methanoarchaea that most probably impact the abundance of methanoarchaea in microbial consortia. Here, we characterize the first identified -infecting virus (MetSV) and show a mechanism for acquiring resistance against MetSV. Based on our results, we propose that growth as sarcina-like aggregates prevents infection and subsequent lysis. These findings allow new insights into the virus-host relationship in methanogenic community structures, their dynamics, and their phase heterogeneity. Moreover, the availability of a specific virus provides new possibilities to deepen our knowledge of the defense mechanisms of potential hosts and offers tools for genetic manipulation.

摘要

以菌株Gö1为宿主,分离出了一种靶向某属物种的新型古菌裂解病毒。由于其球形形态,该病毒被命名为汉氏八叠球菌球形病毒(MetSV)。分子分析表明,MetSV含有双链线性DNA,基因组大小为10567 bp,包含22个开放阅读框(ORF),所有ORF均朝同一方向。预测了其中一些ORF的功能,例如DNA聚合酶、ATP酶、DNA结合蛋白以及包膜(结构)蛋白。使用生物信息学工具在几个已发表的某菌属基因组草图中检测到了MetSV衍生的CRISPR位点间隔序列,揭示了一个潜在的原间隔序列临近基序(PAM)基序(TTA/T)。通过逆转录PCR(RT-PCR)、PAGE分析以及基于液相色谱-质谱(LC-MS)的蛋白质组学验证了几个预测的病毒ORF的转录和表达。通过大气压化学电离(APCI)质谱对核心脂质进行分析表明,MetSV和某菌属均含有古菌醇和无环戊烷部分的甘油二烷基甘油四醚(GDGT-0)。MetSV的宿主范围仅限于以单细胞形式生长的某菌属菌株(某菌1、某菌2和某菌3)。相比之下,以八叠球菌样聚集体形式生长的菌株显然受到保护而免受感染。某菌属培养物中与形态阶段相关的异质性使得在以八叠球菌样聚集体形式培养后,培养物在受到MetSV攻击后能够获得抗性。由于两个CRISPR阵列均未显示出获得MetSV衍生的间隔序列,因此排除了CRISPR/Cas介导的抗性。基于这些发现我们提出,包膜结构重排后从单细胞形态转变为八叠球菌样聚集体可防止MetSV感染及随后的裂解。甲烷古菌是地球上数量最为丰富的生物之一,因为它们大量存在于主要的厌氧环境中。它们将各种碳源,例如乙酸盐、甲胺或甲醇,转化为甲烷和二氧化碳;因此,它们对主要温室气体的排放有重大影响。如今,对于专门感染甲烷古菌的病毒了解甚少,而这些病毒很可能会影响微生物群落中甲烷古菌的丰度。在此,我们对首个鉴定出的感染某菌属的病毒(MetSV)进行了表征,并展示了一种获得针对MetSV抗性的机制。基于我们的结果,我们提出以八叠球菌样聚集体形式生长可防止感染及随后的裂解。这些发现为深入了解产甲烷群落结构中的病毒-宿主关系、其动态变化以及其阶段异质性提供了新的视角。此外,一种特定病毒的可得性为加深我们对潜在宿主防御机制知识的了解提供了新的可能性,并提供了基因操作工具。

相似文献

1
Methanosarcina Spherical Virus, a Novel Archaeal Lytic Virus Targeting Methanosarcina Strains.
J Virol. 2017 Oct 27;91(22). doi: 10.1128/JVI.00955-17. Print 2017 Nov 15.
2
Newly Established Genetic System for Functional Analysis of MetSV.
Int J Mol Sci. 2023 Jul 6;24(13):11163. doi: 10.3390/ijms241311163.
3
Dual-RNAseq Analysis Unravels Virus-Host Interactions of MetSV and .
Viruses. 2022 Nov 21;14(11):2585. doi: 10.3390/v14112585.
4
Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1.
RNA Biol. 2019 Apr;16(4):492-503. doi: 10.1080/15476286.2018.1514234. Epub 2018 Sep 13.
5
The CARF Protein MM_0565 Affects Transcription of the Casposon-Encoded Gene in Gö1.
Biomolecules. 2020 Aug 7;10(8):1161. doi: 10.3390/biom10081161.
6
First description of small proteins encoded by spRNAs in Methanosarcina mazei strain Gö1.
Biochimie. 2015 Oct;117:138-48. doi: 10.1016/j.biochi.2015.04.007. Epub 2015 Apr 16.
9
Phylogenomic proximity and metabolic discrepancy of Methanosarcina mazei Go1 across methanosarcinal genomes.
Biosystems. 2017 May;155:20-28. doi: 10.1016/j.biosystems.2017.03.002. Epub 2017 Mar 23.
10
Insights into the NrpR regulon in Methanosarcina mazei Gö1.
Arch Microbiol. 2008 Sep;190(3):319-32. doi: 10.1007/s00203-008-0369-3. Epub 2008 Apr 16.

引用本文的文献

1
A large-scale transcontinental river system crossed West Antarctica during the Eocene.
Sci Adv. 2024 Jun 7;10(23):eadn6056. doi: 10.1126/sciadv.adn6056. Epub 2024 Jun 5.
2
Archaeal virus entry and egress.
Microlife. 2024 Jan 3;5:uqad048. doi: 10.1093/femsml/uqad048. eCollection 2024.
4
A compendium of viruses from methanogenic archaea reveals their diversity and adaptations to the gut environment.
Nat Microbiol. 2023 Nov;8(11):2170-2182. doi: 10.1038/s41564-023-01485-w. Epub 2023 Sep 25.
5
Newly Established Genetic System for Functional Analysis of MetSV.
Int J Mol Sci. 2023 Jul 6;24(13):11163. doi: 10.3390/ijms241311163.
6
Active in vivo translocation of the Methanosarcina mazei Gö1 Casposon.
Nucleic Acids Res. 2023 Jul 21;51(13):6927-6943. doi: 10.1093/nar/gkad474.
7
Dual-RNAseq Analysis Unravels Virus-Host Interactions of MetSV and .
Viruses. 2022 Nov 21;14(11):2585. doi: 10.3390/v14112585.
8
Complete Genome Sequence of Methanofollis aquaemaris BCRC 16166, Isolated from a Marine Aquaculture Fishpond.
Microbiol Resour Announc. 2022 Oct 20;11(10):e0074322. doi: 10.1128/mra.00743-22. Epub 2022 Sep 12.
9
Diversity of novel archaeal viruses infecting methanogens discovered through coupling of stable isotope probing and metagenomics.
Environ Microbiol. 2022 Oct;24(10):4853-4868. doi: 10.1111/1462-2920.16120. Epub 2022 Jul 18.

本文引用的文献

1
Communication between viruses guides lysis-lysogeny decisions.
Nature. 2017 Jan 26;541(7638):488-493. doi: 10.1038/nature21049. Epub 2017 Jan 18.
2
Comparative Proteome Analysis in Schizosaccharomyces pombe Identifies Metabolic Targets to Improve Protein Production and Secretion.
Mol Cell Proteomics. 2016 Oct;15(10):3090-3106. doi: 10.1074/mcp.M115.051474. Epub 2016 Jul 31.
3
Remarkable Mechanisms in Microbes to Resist Phage Infections.
Annu Rev Virol. 2014 Nov;1(1):307-31. doi: 10.1146/annurev-virology-031413-085500. Epub 2014 Jun 27.
4
A virus of hyperthermophilic archaea with a unique architecture among DNA viruses.
Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2478-83. doi: 10.1073/pnas.1518929113. Epub 2016 Feb 16.
5
An updated evolutionary classification of CRISPR-Cas systems.
Nat Rev Microbiol. 2015 Nov;13(11):722-36. doi: 10.1038/nrmicro3569. Epub 2015 Sep 28.
6
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.
7
40 Years of archaeal virology: Expanding viral diversity.
Virology. 2015 May;479-480:369-78. doi: 10.1016/j.virol.2015.03.031. Epub 2015 Apr 10.
8
Genomic and phenotypic differentiation among Methanosarcina mazei populations from Columbia River sediment.
ISME J. 2015 Oct;9(10):2191-205. doi: 10.1038/ismej.2015.31. Epub 2015 Mar 10.
9
Archaeal extrachromosomal genetic elements.
Microbiol Mol Biol Rev. 2015 Mar;79(1):117-52. doi: 10.1128/MMBR.00042-14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验