Bauer Greta M, Stypula-Cyrus Yolanda, Subramanian Hariharan, Cherkezyan Lusik, Viswanathan Parvathi, Zhang Di, Iyengar Radha, Bagalkar Saurabh, Derbas Justin, Graff Taylor, Gladstein Scott, Almassalha Luay M, Chandler John E, Roy Hemant K, Backman Vadim
Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
NanoCytomics LLC., Evanston, IL 60201, USA.
Future Sci OA. 2017 May 5;3(3):FSO206. doi: 10.4155/fsoa-2017-0027. eCollection 2017 Aug.
Morphological alterations of the nuclear texture are a hallmark of carcinogenesis. At later stages of disease, these changes are well characterized and detectable by light microscopy. Evidence suggests that similar albeit nanoscopic alterations develop at the predysplastic stages of carcinogenesis. Using the novel optical technique partial wave spectroscopic microscopy, we identified profound changes in the nanoscale chromatin topology in microscopically normal tissue as a common event in the field carcinogenesis of many cancers. In particular, higher-order chromatin structure at supranucleosomal length scales (20-200 nm) becomes exceedingly heterogeneous, a measure we quantify using the disorder strength ( ) of the spatial arrangement of chromatin density. Here, we review partial wave spectroscopic nanocytology clinical studies and the technology's promise as an early cancer screening technology.
细胞核纹理的形态学改变是致癌作用的一个标志。在疾病的后期阶段,这些变化特征明显,通过光学显微镜即可检测到。有证据表明,在致癌作用的发育异常前期阶段会出现类似的纳米级改变。我们使用新型光学技术——分波光谱显微镜,发现在显微镜下看似正常的组织中,纳米级染色质拓扑结构发生了深刻变化,这是许多癌症的场致癌作用中的常见现象。特别是,超核小体长度尺度(20 - 200纳米)上的高阶染色质结构变得极其不均匀,我们使用染色质密度空间排列的无序强度( )来量化这一指标。在此,我们回顾分波光谱纳米细胞学的临床研究以及该技术作为早期癌症筛查技术的前景。