Li Xin, Varallyay Csanad G, Gahramanov Seymur, Fu Rongwei, Rooney William D, Neuwelt Edward A
Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.
Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
NMR Biomed. 2017 Nov;30(11). doi: 10.1002/nbm.3797. Epub 2017 Sep 8.
Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K leakage correction approach, in which the K pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage rate constant, and even make it time dependent.
动态磁敏感对比增强磁共振成像(DSC-MRI)被广泛用于获取信息丰富的灌注成像生物标志物,如相对脑血容量(rCBV)。用于DSC-MRI的相关后处理软件包可从主要的MRI仪器制造商和第三方供应商处获得。使用基于低分子量钆(Gd)的造影剂(CR)进行DSC-MRI的一个独特之处在于,CR分子会泄漏到间质空间,从而混淆检测到的DSC信号。多年来已经提出了几种校正这种泄漏效应的方法。其中最流行的是Boxerman-Schmainda-Weisskoff(BSW)K泄漏校正方法,其中K伪一级速率常数量化泄漏。在这项工作中,我们提出了一种用于BSW泄漏校正方法的新方法。基于数据的药代动力学解释,使用一种数学上类似于Gjedde-Patlak线性化的方法,对通常采用的考虑血管内和外渗CR成分贡献的R *表达式进行变换。然后,泄漏速率常数(K)可以确定为变换后数据图线性部分的斜率。使用高分子量(约750 kDa)、基于铁的血管内注射用 ferumoxytol(FeO)的DSC数据,对新范式的药代动力学解释进行了经验验证。这项工作的主要目标是通过实验证明在变换后的数据图中通常存在线性部分。这个线性部分明确界定了Gd CR伪泄漏速率常数,它等于从线性段得出的斜率。第二个目标是证明在CR注入期间初始瞬态期的变换点通常偏离线性化图的线性趋势。包含这些点会对泄漏速率常数的准确性产生负面影响,甚至使其具有时间依赖性。