Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology in Uppsala, 75007 Uppsala, Sweden.
Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
Plant Physiol. 2017 Nov;175(3):1144-1157. doi: 10.1104/pp.17.00805. Epub 2017 Sep 11.
The Arabidopsis () gynoecium consists of two congenitally fused carpels made up of two lateral valve domains and two medial domains, which retain meristematic properties and later fuse to produce the female reproductive structures vital for fertilization. Polar auxin transport (PAT) is important for setting up distinct apical auxin signaling domains in the early floral meristem remnants allowing for lateral domain identity and outgrowth. Crosstalk between auxin and cytokinin plays an important role in the development of other meristematic tissues, but hormone interaction studies to date have focused on more accessible later-stage gynoecia and the spatiotemporal interactions pivotal for patterning of early gynoecium primordia remain unknown. Focusing on the earliest stages, we propose a cytokinin-auxin feedback model during early gynoecium patterning and hormone homeostasis. Our results suggest that cytokinin positively regulates auxin signaling in the incipient gynoecial primordium and strengthen the concept that cytokinin regulates auxin homeostasis during gynoecium development. Specifically, medial cytokinin promotes auxin biosynthesis components [/ (/)] in, and PINFORMED7 (PIN7)-mediated auxin efflux from, the medial domain. The resulting laterally focused auxin signaling triggers (), which then represses cytokinin signaling in a PAT-dependent feedback. Cytokinin also down-regulates PIN3, promoting auxin accumulation in the apex. The , , and mutants are hypersensitive to exogenous cytokinin and 1-napthylphthalamic acid (NPA), highlighting their role in mediolateral gynoecium patterning. In summary, these mechanisms self-regulate cytokinin and auxin signaling domains, ensuring correct domain specification and gynoecium development.
拟南芥(Arabidopsis)雌蕊由两个先天融合的心皮组成,由两个侧瓣域和两个中域组成,它们保留了分生组织特性,后来融合形成了对受精至关重要的雌性生殖结构。极性生长素运输(PAT)对于在早期花分生组织残余物中建立独特的顶端生长素信号域很重要,这允许侧瓣域的身份和生长。生长素和细胞分裂素之间的串扰在其他分生组织组织的发育中起着重要作用,但迄今为止激素相互作用的研究集中在更容易接近的后期雌蕊上,对于早期雌蕊原基模式形成的时空相互作用仍然未知。我们关注最早的阶段,提出了早期雌蕊模式形成和激素平衡过程中的细胞分裂素-生长素反馈模型。我们的结果表明,细胞分裂素在初期雌蕊原基中正向调节生长素信号,这加强了细胞分裂素在雌蕊发育过程中调节生长素稳态的概念。具体而言,中域的细胞分裂素促进生长素生物合成成分[()]和 PINFORMED7(PIN7)介导的生长素从中域流出。由此产生的侧向聚焦的生长素信号触发(),然后以 PAT 依赖的反馈抑制细胞分裂素信号。细胞分裂素还下调 PIN3,促进顶端的生长素积累。 ()、 ()和 ()突变体对细胞分裂素和 1-萘基邻氨甲酰苯甲酸(NPA)的敏感性增加,突出了它们在介导雌雄蕊中侧 patterning 的作用。总之,这些机制自我调节细胞分裂素和生长素信号域,确保正确的域指定和雌蕊发育。