Suppr超能文献

生成模型用于全球合作关系。

Generative Models for Global Collaboration Relationships.

机构信息

U.S. Army Research Lab, Adelphi, MD, 20783, USA.

Raytheon BBN Technologies, Cambridge, MA, 02138, USA.

出版信息

Sci Rep. 2017 Sep 11;7(1):11160. doi: 10.1038/s41598-017-10951-5.

Abstract

When individuals interact with each other and meaningfully contribute toward a common goal, it results in a collaboration. The artifacts resulting from collaborations are best captured using a hypergraph model, whereas the relation of who has collaborated with whom is best captured via an abstract simplicial complex (SC). We propose a generative algorithm GENESCs for SCs modeling fundamental collaboration relations. The proposed network growth process favors attachment that is preferential not to an individual's degree, i.e., how many people has he/she collaborated with, but to his/her facet degree, i.e., how many maximal groups or facets has he/she collaborated within. Based on our observation that several real-world facet size distributions have significant deviation from power law-mainly since larger facets tend to subsume smaller ones-we adopt a data-driven approach. We prove that the facet degree distribution yielded by GENESCs is power law distributed for large SCs and show that it is in agreement with real world co-authorship data. Finally, based on our intuition of collaboration formation in domains such as collaborative scientific experiments and movie production, we propose two variants of GENESCs based on clamped and hybrid preferential attachment schemes, and show that they perform well in these domains.

摘要

当个体之间相互作用并为共同目标做出有意义的贡献时,就会产生协作。使用超图模型可以最好地捕获协作产生的人工制品,而通过抽象单纯复形(SC)可以最好地捕获谁与谁协作的关系。我们提出了一种用于 SC 建模基本协作关系的生成算法 GENESCs。所提出的网络增长过程有利于优先附着,而不是优先附着于个体的度,即他/她与多少人合作,而是优先附着于他/她的面度数,即他/她在多少个最大组或面内合作。基于我们观察到的几个现实世界的面大小分布与幂律有显著偏差——主要是因为较大的面往往包含较小的面——我们采用了一种数据驱动的方法。我们证明了 GENESCs 产生的面度数分布在大的 SC 中是幂律分布的,并表明它与现实世界的合著数据一致。最后,基于我们在协作科学实验和电影制作等领域对协作形成的直觉,我们提出了基于固定和混合优先附着方案的 GENESCs 的两种变体,并表明它们在这些领域表现良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f107/5593992/75e16adcda73/41598_2017_10951_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验