Suppr超能文献

微生物和抗生素相互作用网络驱动多药耐药菌的定植和感染。

Network of microbial and antibiotic interactions drive colonization and infection with multidrug-resistant organisms.

机构信息

Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-5680.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10467-10472. doi: 10.1073/pnas.1710235114. Epub 2017 Sep 12.

Abstract

The emergence and spread of multidrug-resistant organisms (MDROs) across global healthcare networks poses a serious threat to hospitalized individuals. Strategies to limit the emergence and spread of MDROs include oversight to decrease selective pressure for MDROs by promoting appropriate antibiotic use via antibiotic stewardship programs. However, restricting the use of one antibiotic often requires a compensatory increase in the use of other antibiotics, which in turn selects for the emergence of different MDRO species. Further, the downstream effects of antibiotic treatment decisions may also be influenced by functional interactions among different MDRO species, with the potential clinical implications of such interactions remaining largely unexplored. Here, we attempt to decipher the influence network between antibiotic treatment, MDRO colonization, and infection by leveraging active surveillance and antibiotic treatment data for 234 nursing home residents. Our analysis revealed a complex network of interactions: antibiotic use was a risk factor for primary MDRO colonization, which in turn increased the likelihood of colonization and infection by other MDROs. When we focused on the risk of catheter-associated urinary tract infections (CAUTI) caused by , and we observed that cocolonization with specific pairs of MDROs increased the risk of CAUTI, signifying the involvement of microbial interactions in CAUTI pathogenesis. In summary, our work demonstrates the existence of an underappreciated healthcare-associated ecosystem and strongly suggests that effective control of overall MDRO burden will require stewardship interventions that take into account both primary and secondary impacts of antibiotic treatments.

摘要

多药耐药菌(MDRO)在全球医疗网络中的出现和传播对住院患者构成了严重威胁。限制 MDRO 出现和传播的策略包括通过抗生素管理计划促进适当使用抗生素来减少对 MDRO 的选择压力进行监督。然而,限制一种抗生素的使用通常需要补偿性地增加其他抗生素的使用,这反过来又选择了不同的 MDRO 物种的出现。此外,抗生素治疗决策的下游效应也可能受到不同 MDRO 物种之间功能相互作用的影响,而这些相互作用的潜在临床意义在很大程度上仍未得到探索。在这里,我们试图利用 234 名养老院居民的主动监测和抗生素治疗数据来破译抗生素治疗、MDRO 定植和感染之间的影响网络。我们的分析揭示了一个复杂的相互作用网络:抗生素的使用是原发性 MDRO 定植的危险因素,而 MDRO 的定植又增加了其他 MDRO 定植和感染的可能性。当我们专注于 引起的导管相关性尿路感染(CAUTI)的风险时,我们观察到与特定 MDRO 对的共定植增加了 CAUTI 的风险,这表明微生物相互作用参与了 CAUTI 的发病机制。总之,我们的工作表明存在一个被低估的医疗保健相关生态系统,并且强烈表明有效控制整体 MDRO 负担将需要考虑抗生素治疗的主要和次要影响的管理干预措施。

相似文献

1
Network of microbial and antibiotic interactions drive colonization and infection with multidrug-resistant organisms.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10467-10472. doi: 10.1073/pnas.1710235114. Epub 2017 Sep 12.
3
Prevalence of multidrug-resistant organisms in nursing homes in Belgium in 2015.
PLoS One. 2019 Mar 28;14(3):e0214327. doi: 10.1371/journal.pone.0214327. eCollection 2019.
4
Prevalence of and Factors Associated With Multidrug Resistant Organism (MDRO) Colonization in 3 Nursing Homes.
Infect Control Hosp Epidemiol. 2016 Dec;37(12):1485-1488. doi: 10.1017/ice.2016.215. Epub 2016 Sep 27.
7
The Impact of Reducing Antibiotics on the Transmission of Multidrug-Resistant Organisms.
Infect Control Hosp Epidemiol. 2017 Jun;38(6):663-669. doi: 10.1017/ice.2017.34. Epub 2017 Mar 8.
10
Infection management and multidrug-resistant organisms in nursing home residents with advanced dementia.
JAMA Intern Med. 2014 Oct;174(10):1660-7. doi: 10.1001/jamainternmed.2014.3918.

引用本文的文献

2
An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity.
Antibiotics (Basel). 2024 Aug 13;13(8):763. doi: 10.3390/antibiotics13080763.
5
Deconstructing the effects of stochasticity on transmission of hospital-acquired infections in ICUs.
R Soc Open Sci. 2023 Sep 13;10(9):230277. doi: 10.1098/rsos.230277. eCollection 2023 Sep.
8
Is shorter always better? The pros and cons of treating Gram-negative bloodstream infections with 7 days of antibiotics.
JAC Antimicrob Resist. 2022 Jun 16;4(3):dlac058. doi: 10.1093/jacamr/dlac058. eCollection 2022 Jun.

本文引用的文献

1
Interventions to improve antibiotic prescribing practices for hospital inpatients.
Cochrane Database Syst Rev. 2017 Feb 9;2(2):CD003543. doi: 10.1002/14651858.CD003543.pub4.
3
How Often Do Clinically Diagnosed Catheter-Associated Urinary Tract Infections in Nursing Homes Meet Standardized Criteria?
J Am Geriatr Soc. 2017 Feb;65(2):395-401. doi: 10.1111/jgs.14533. Epub 2016 Nov 14.
5
Enterococcal Metabolite Cues Facilitate Interspecies Niche Modulation and Polymicrobial Infection.
Cell Host Microbe. 2016 Oct 12;20(4):493-503. doi: 10.1016/j.chom.2016.09.004.
6
Predominance of Lactobacillus spp. Among Patients Who Do Not Acquire Multidrug-Resistant Organisms.
Clin Infect Dis. 2016 Oct 1;63(7):937-943. doi: 10.1093/cid/ciw426. Epub 2016 Jun 28.
7
Use of Shotgun Metagenome Sequencing To Detect Fecal Colonization with Multidrug-Resistant Bacteria in Children.
J Clin Microbiol. 2016 Jul;54(7):1804-1813. doi: 10.1128/JCM.02638-15. Epub 2016 Apr 27.
8
Nested Russian Doll-Like Genetic Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene blaKPC.
Antimicrob Agents Chemother. 2016 May 23;60(6):3767-78. doi: 10.1128/AAC.00464-16. Print 2016 Jun.
9
Multidrug-Resistant Organisms on Patients' Hands: A Missed Opportunity.
JAMA Intern Med. 2016 May 1;176(5):705-6. doi: 10.1001/jamainternmed.2016.0142.
10
Impact of Intervention Measures on MRSA Clonal Type and Carriage Site Prevalence.
mBio. 2016 Mar 8;7(2):e00218. doi: 10.1128/mBio.00218-16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验