Fernando Joseph F S, Zhang Chao, Firestein Konstantin L, Golberg Dmitri
School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia.
National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow, 119049, Russia.
Small. 2017 Dec;13(45). doi: 10.1002/smll.201701564. Epub 2017 Sep 13.
In situ transmission electron microscopy (TEM) allows one to investigate nanostructures at high spatial resolution in response to external stimuli, such as heat, electrical current, mechanical force and light. This review exclusively focuses on the optical, optoelectronic and photocatalytic studies inside TEM. With the development of TEMs and specialized TEM holders that include in situ illumination and light collection optics, it is possible to perform optical spectroscopies and diverse optoelectronic experiments inside TEM with simultaneous high resolution imaging of nanostructures. Optical TEM holders combining the capability of a scanning tunneling microscopy probe have enabled nanomaterial bending/stretching and electrical measurements in tandem with illumination. Hence, deep insights into the optoelectronic property versus true structure and its dynamics could be established at the nanometer-range precision thus evaluating the suitability of a nanostructure for advanced light driven technologies. This report highlights systems for in situ illumination of TEM samples and recent research work based on the relevant methods, including nanomaterial cathodoluminescence, photoluminescence, photocatalysis, photodeposition, photoconductivity and piezophototronics.
原位透射电子显微镜(TEM)使人们能够在外部刺激(如热、电流、机械力和光)作用下,以高空间分辨率研究纳米结构。本综述专门聚焦于透射电子显微镜内部的光学、光电和光催化研究。随着透射电子显微镜以及包括原位照明和光收集光学器件在内的专用透射电子显微镜样品杆的发展,在透射电子显微镜内部进行光谱学和各种光电实验并同时对纳米结构进行高分辨率成像成为可能。结合扫描隧道显微镜探针功能的光学透射电子显微镜样品杆能够在照明的同时进行纳米材料的弯曲/拉伸和电学测量。因此,可以在纳米级精度上深入了解光电特性与真实结构及其动力学之间的关系,从而评估纳米结构对先进光驱动技术的适用性。本报告重点介绍了用于透射电子显微镜样品原位照明的系统以及基于相关方法的近期研究工作,包括纳米材料的阴极发光、光致发光、光催化、光沉积、光电导和压电光电子学。