Suppr超能文献

负荷对健康及前交叉韧带重建膝关节的体内胫股和髌股运动学的影响。

Effect of Loading on In Vivo Tibiofemoral and Patellofemoral Kinematics of Healthy and ACL-Reconstructed Knees.

作者信息

Kaiser Jarred M, Vignos Michael F, Kijowski Richard, Baer Geoffrey, Thelen Darryl G

机构信息

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Am J Sports Med. 2017 Dec;45(14):3272-3279. doi: 10.1177/0363546517724417. Epub 2017 Sep 13.

Abstract

BACKGROUND

Although knees that have undergone anterior cruciate ligament reconstruction (ACLR) often exhibit normal laxity on clinical examination, abnormal kinematic patterns have been observed when the joint is dynamically loaded during whole body activity. This study investigated whether abnormal knee kinematics arise with loading under isolated dynamic movements.

HYPOTHESIS

Tibiofemoral and patellofemoral kinematics of ACLR knees will be similar to those of the contralateral uninjured control knee during passive flexion-extension, with bilateral differences emerging when an inertial load is applied.

STUDY DESIGN

Controlled laboratory study.

METHODS

The bilateral knees of 18 subjects who had undergone unilateral ACLR within the past 4 years were imaged by use of magnetic resonance imaging (MRI). Their knees were cyclically (0.5 Hz) flexed passively. Subjects then actively flexed and extended their knees against an inertial load that induced stretch-shortening quadriceps contractions, as seen during the load acceptance phase of gait. A dynamic, volumetric, MRI sequence was used to track tibiofemoral and patellofemoral kinematics through 6 degrees of freedom. A repeated-measures analysis of variance was used to compare secondary tibiofemoral and patellofemoral kinematics between ACLR and healthy contralateral knees during the passive and active extension phases of the cyclic motion.

RESULTS

Relative to the passive motion, inertial loading induced significant shifts in anterior and superior tibial translation, internal tibial rotation, and all patellofemoral degrees of freedom. As hypothesized, tibiofemoral and patellofemoral kinematics were bilaterally symmetric during the passive condition. However, inertial loading induced bilateral differences, with the ACLR knees exhibiting a significant shift toward external tibial rotation. A trend toward greater medial and anterior tibial translation was seen in the ACLR knees.

CONCLUSION

This study demonstrates that abnormal knee kinematic patterns in ACLR knees emerge during a simple, active knee flexion-extension task that can be performed in an MRI scanner.

CLINICAL RELEVANCE

It is hypothesized that abnormal knee kinematics may alter cartilage loading patterns and thereby contribute to increased risk for osteoarthritis. Recent advances in quantitative MRI can be used to detect early cartilage degeneration in ACLR knees. This study demonstrates the feasibility of identifying abnormal ACLR kinematics by use of dynamic MRI, supporting the combined use of dynamic and quantitative MRI to investigate the proposed link between knee motion, cartilage contact, and early biomarkers of cartilage degeneration.

摘要

背景

尽管接受前交叉韧带重建(ACLR)的膝关节在临床检查时通常表现出正常的松弛度,但在全身活动中关节受到动态负荷时,已观察到异常的运动模式。本研究调查了在孤立的动态运动负荷下是否会出现异常的膝关节运动学变化。

假设

在被动屈伸过程中,ACLR膝关节的胫股和髌股运动学将与对侧未受伤的对照膝关节相似,当施加惯性负荷时会出现双侧差异。

研究设计

对照实验室研究。

方法

对18名在过去4年内接受单侧ACLR的受试者的双侧膝关节进行磁共振成像(MRI)检查。膝关节被动循环(0.5Hz)屈伸。然后受试者主动屈伸膝关节,对抗一个惯性负荷,该负荷会诱发股四头肌的拉长-缩短收缩,就像在步态的负荷接受阶段所看到的那样。使用动态容积MRI序列通过六个自由度跟踪胫股和髌股运动学。采用重复测量方差分析来比较ACLR膝关节和健康对侧膝关节在循环运动的被动和主动伸展阶段的胫股和髌股次要运动学。

结果

相对于被动运动,惯性负荷导致胫骨向前和向上平移、胫骨内旋以及所有髌股自由度出现显著变化。如假设的那样,在被动状态下胫股和髌股运动学是双侧对称的。然而,惯性负荷导致了双侧差异,ACLR膝关节表现出显著的向外胫骨旋转变化。在ACLR膝关节中观察到胫骨向内和向前平移增加的趋势。

结论

本研究表明,在MRI扫描仪中可以进行的简单主动膝关节屈伸任务期间,ACLR膝关节会出现异常的膝关节运动模式。

临床意义

据推测,异常的膝关节运动学可能会改变软骨负荷模式,从而增加患骨关节炎的风险。定量MRI的最新进展可用于检测ACLR膝关节早期软骨退变。本研究证明了使用动态MRI识别ACLR异常运动学的可行性,支持联合使用动态和定量MRI来研究膝关节运动、软骨接触和软骨退变早期生物标志物之间的拟议联系。

相似文献

1
Effect of Loading on In Vivo Tibiofemoral and Patellofemoral Kinematics of Healthy and ACL-Reconstructed Knees.
Am J Sports Med. 2017 Dec;45(14):3272-3279. doi: 10.1177/0363546517724417. Epub 2017 Sep 13.
5
Effects of Anterolateral Structure Augmentation on the In Vivo Kinematics of Anterior Cruciate Ligament-Reconstructed Knees.
Am J Sports Med. 2021 Mar;49(3):656-666. doi: 10.1177/0363546520981743. Epub 2021 Jan 19.
6
Anterior Cruciate Ligament Reconstruction Affects Tibiofemoral Joint Congruency During Dynamic Functional Movement.
Am J Sports Med. 2018 Jun;46(7):1566-1574. doi: 10.1177/0363546518764675. Epub 2018 Apr 3.
8
Variations in Knee Kinematics After ACL Injury and After Reconstruction Are Correlated With Bone Shape Differences.
Clin Orthop Relat Res. 2017 Oct;475(10):2427-2435. doi: 10.1007/s11999-017-5368-8.
10
Tibiofemoral joint kinematics of the anterior cruciate ligament-reconstructed knee during a single-legged hop landing.
Am J Sports Med. 2010 Sep;38(9):1820-8. doi: 10.1177/0363546510365531. Epub 2010 May 14.

引用本文的文献

1
The evolution of three-dimensional knee kinematics after ACL reconstruction within one year.
Front Bioeng Biotechnol. 2025 Apr 23;13:1572160. doi: 10.3389/fbioe.2025.1572160. eCollection 2025.
3
Length Changes of the Medial Patellofemoral Ligament During In Vivo Knee Motion: An Evaluation Using Dynamic Computed Tomography.
Am J Sports Med. 2023 Dec;51(14):3724-3731. doi: 10.1177/03635465231205597. Epub 2023 Nov 13.
4
Effect of Time After Injury on Tibiofemoral Joint Kinematics in Anterior Cruciate Ligament-Deficient Knees During Gait.
Orthop J Sports Med. 2022 Jul 21;10(7):23259671221110160. doi: 10.1177/23259671221110160. eCollection 2022 Jul.
6
The effect of lateral extra-articular tenodesis on in vivo cartilage contact in combined anterior cruciate ligament reconstruction.
Knee Surg Sports Traumatol Arthrosc. 2022 Jan;30(1):61-70. doi: 10.1007/s00167-021-06480-4. Epub 2021 Feb 12.
7
Development of new cartilage lesions after ACL reconstruction is associated with abnormal knee rotation.
Knee Surg Sports Traumatol Arthrosc. 2022 Mar;30(3):842-851. doi: 10.1007/s00167-020-06387-6. Epub 2021 Feb 2.
8
Effect of walking on in vivo tibiofemoral cartilage strain in ACL-deficient versus intact knees.
J Biomech. 2021 Feb 12;116:110210. doi: 10.1016/j.jbiomech.2020.110210. Epub 2020 Dec 28.
10
The effect of articular geometry features identified using statistical shape modelling on knee biomechanics.
Med Eng Phys. 2019 Apr;66:47-55. doi: 10.1016/j.medengphy.2019.02.009. Epub 2019 Mar 6.

本文引用的文献

1
The Relationship of Static Tibial Tubercle-Trochlear Groove Measurement and Dynamic Patellar Tracking.
Am J Sports Med. 2017 Jul;45(8):1856-1863. doi: 10.1177/0363546517700119. Epub 2017 Apr 18.
2
Patellofemoral Kinematics and Tibial Tuberosity-Trochlear Groove Distances in Female Adolescents With Patellofemoral Pain.
Am J Sports Med. 2017 Apr;45(5):1102-1109. doi: 10.1177/0363546516679139. Epub 2016 Dec 28.
3
Accuracy of model-based tracking of knee kinematics and cartilage contact measured by dynamic volumetric MRI.
Med Eng Phys. 2016 Oct;38(10):1131-5. doi: 10.1016/j.medengphy.2016.06.016. Epub 2016 Jul 4.
5
Validation of a method for combining biplanar radiography and magnetic resonance imaging to estimate knee cartilage contact.
Med Eng Phys. 2015 Oct;37(10):937-47. doi: 10.1016/j.medengphy.2015.07.002. Epub 2015 Aug 21.
6
Influence of step rate and quadriceps load distribution on patellofemoral cartilage contact pressures during running.
J Biomech. 2015 Aug 20;48(11):2871-8. doi: 10.1016/j.jbiomech.2015.04.036. Epub 2015 May 22.
8
In vivo patellofemoral contact mechanics during active extension using a novel dynamic MRI-based methodology.
Osteoarthritis Cartilage. 2013 Dec;21(12):1886-1894. doi: 10.1016/j.joca.2013.08.023. Epub 2013 Sep 3.
9
Automatic determination of an anatomical coordinate system for a three-dimensional model of the human patella.
J Biomech. 2013 Aug 9;46(12):2093-6. doi: 10.1016/j.jbiomech.2013.05.024. Epub 2013 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验