Suppr超能文献

硫酸盐还原菌对氧还原反应的影响:细菌细胞与代谢产物的不同作用

Oxygen Reduction Reaction Affected by Sulfate-Reducing Bacteria: Different Roles of Bacterial Cells and Metabolites.

作者信息

Wu Jiajia, Liu Huaiqun, Wang Peng, Zhang Dun, Sun Yan, Li Ee

机构信息

Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071 China.

Shenzhen Marine Environment Monitoring Station, State Oceanic Administration, Shenzhen, 518067 China.

出版信息

Indian J Microbiol. 2017 Sep;57(3):344-350. doi: 10.1007/s12088-017-0667-z. Epub 2017 Aug 2.

Abstract

Sulfate-reducing bacteria (SRB) were found to be capable of tolerating a certain amount of oxygen (O), but how they affect oxygen reduction reaction (ORR) has not been clear. The present work investigated the impact of SRB on ORR in 3.5 wt% sodium chloride solution with the cyclic voltammetry method. The addition of SRB culture solution hampered both the reduction of O to superoxide (O) and hydrogen peroxide (HO) to water (HO), and the influence of SRB metabolites was much larger than that of bacterial cells. Sulfide and extracellular polymeric substances (EPS), typical inorganic and organic metabolic products, had great impact on ORR. Sulfide played an important role in the decrease of cathodic current for HO reduction due to its hydrolysis and chemical reaction activity with HO. EPS were sticky, easy to adsorb on the electrode surface and abundant in functional groups, which hindered the transformation of O into O and favored the reduction of HO to HO.

摘要

研究发现,硫酸盐还原菌(SRB)能够耐受一定量的氧气(O),但其如何影响氧还原反应(ORR)尚不清楚。本研究采用循环伏安法研究了SRB在3.5 wt%氯化钠溶液中对ORR的影响。添加SRB培养液阻碍了O还原为超氧化物(O)以及过氧化氢(HO)还原为水(HO)的过程,且SRB代谢产物的影响远大于细菌细胞。硫化物和胞外聚合物(EPS)作为典型的无机和有机代谢产物,对ORR有很大影响。硫化物因其水解作用以及与HO的化学反应活性,在降低HO还原的阴极电流方面发挥了重要作用。EPS具有粘性,易于吸附在电极表面且富含官能团,这阻碍了O转化为O,并有利于HO还原为HO。

相似文献

1
Oxygen Reduction Reaction Affected by Sulfate-Reducing Bacteria: Different Roles of Bacterial Cells and Metabolites.
Indian J Microbiol. 2017 Sep;57(3):344-350. doi: 10.1007/s12088-017-0667-z. Epub 2017 Aug 2.
3
[Adsorption Mechanisms of Ciprofloxacin by Extracellular Polymeric Substances of Sulfate-reducing Bacteria Sludge].
Huan Jing Ke Xue. 2018 Oct 8;39(10):4653-4660. doi: 10.13227/j.hjkx.201802132.
4
Cathodically Dissolved Platinum Resulting from the O and HO Reduction Reactions on Platinum Ultramicroelectrodes.
Anal Chem. 2017 Mar 7;89(5):3087-3092. doi: 10.1021/acs.analchem.6b04832. Epub 2017 Feb 17.
5
Stress-responses of activated sludge and anaerobic sulfate-reducing bacteria sludge under long-term ciprofloxacin exposure.
Water Res. 2019 Nov 1;164:114964. doi: 10.1016/j.watres.2019.114964. Epub 2019 Aug 8.
9
A novel sulfate-reducing bacteria detection method based on inhibition of cysteine protease activity.
Talanta. 2014 Nov;129:270-5. doi: 10.1016/j.talanta.2014.04.063. Epub 2014 Jun 2.
10

引用本文的文献

1
Bacterial Adhesion to Natural and Synthetic Fibre-Forming Polymers: Influence of Material Properties.
Polymers (Basel). 2024 Aug 24;16(17):2409. doi: 10.3390/polym16172409.
3
Factors Affecting Bacterial Adhesion on Selected Textile Fibres.
Indian J Microbiol. 2021 Mar;61(1):31-37. doi: 10.1007/s12088-020-00903-5. Epub 2020 Sep 1.

本文引用的文献

1
Recent Advances in Electrocatalysts for Oxygen Reduction Reaction.
Chem Rev. 2016 Mar 23;116(6):3594-657. doi: 10.1021/acs.chemrev.5b00462. Epub 2016 Feb 17.
2
PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells.
Bioelectrochemistry. 2015 Dec;106(Pt A):240-7. doi: 10.1016/j.bioelechem.2015.05.008. Epub 2015 May 16.
3
The biocathode of microbial electrochemical systems and microbially-influenced corrosion.
Bioresour Technol. 2015 Aug;190:395-401. doi: 10.1016/j.biortech.2015.04.084. Epub 2015 Apr 30.
4
Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater.
Bioresour Technol. 2011 Jan;102(1):304-11. doi: 10.1016/j.biortech.2010.06.157. Epub 2010 Jul 31.
5
Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells.
Appl Microbiol Biotechnol. 2010 Aug;87(5):1675-87. doi: 10.1007/s00253-010-2645-9. Epub 2010 May 14.
6
Marine aerobic biofilm as biocathode catalyst.
Bioelectrochemistry. 2010 Apr;78(1):51-6. doi: 10.1016/j.bioelechem.2009.06.006. Epub 2009 Jun 21.
7
Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions.
J Hazard Mater. 2006 Dec 1;138(3):589-93. doi: 10.1016/j.jhazmat.2006.05.092. Epub 2006 Jun 3.
8
Oxygen defense in sulfate-reducing bacteria.
J Biotechnol. 2006 Oct 20;126(1):87-100. doi: 10.1016/j.jbiotec.2006.03.041. Epub 2006 May 19.
9
Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas.
Microbiology (Reading). 2003 Jun;149(Pt 6):1513-1522. doi: 10.1099/mic.0.26155-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验