Suppr超能文献

莱姆病与YouTube:视频内容的横断面研究

Lyme Disease and YouTube : A Cross-Sectional Study of Video Contents.

作者信息

Basch Corey H, Mullican Lindsay A, Boone Kwanza D, Yin Jingjing, Berdnik Alyssa, Eremeeva Marina E, Fung Isaac Chun-Hai

机构信息

Department of Public Health, William Paterson University, Wayne, New Jersey, United States of America.

Department of Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, United States of America.

出版信息

Osong Public Health Res Perspect. 2017 Aug;8(4):289-292. doi: 10.24171/j.phrp.2017.8.4.10. Epub 2017 Aug 31.

Abstract

OBJECTIVES

Lyme disease is the most common tick-borne disease. People seek health information on Lyme disease from YouTube videos. In this study, we investigated if the contents of Lyme disease-related YouTube videos varied by their sources.

METHODS

Most viewed English YouTube videos (n = 100) were identified and manually coded for contents and sources.

RESULTS

Within the sample, 40 videos were consumer-generated, 31 were internet-based news, 16 were professional, and 13 were TV news. Compared with consumer-generated videos, TV news videos were more likely to mention celebrities (odds ratio [OR], 10.57; 95% confidence interval [CI], 2.13-52.58), prevention of Lyme disease through wearing protective clothing (OR, 5.63; 95% CI, 1.23-25.76), and spraying insecticides (OR, 7.71; 95% CI, 1.52-39.05).

CONCLUSION

A majority of the most popular Lyme disease-related YouTube videos were not created by public health professionals. Responsible reporting and creative video-making facilitate Lyme disease education. Partnership with YouTube celebrities to co-develop educational videos may be a future direction.

摘要

目的

莱姆病是最常见的蜱传疾病。人们通过YouTube视频获取有关莱姆病的健康信息。在本研究中,我们调查了莱姆病相关YouTube视频的内容是否因其来源而异。

方法

识别出观看次数最多的英文YouTube视频(n = 100),并对其内容和来源进行人工编码。

结果

在样本中,40个视频是用户生成的,31个是基于互联网的新闻,16个是专业的,13个是电视新闻。与用户生成的视频相比,电视新闻视频更有可能提及名人(优势比[OR],10.57;95%置信区间[CI],2.13 - 52.58)、通过穿着防护服预防莱姆病(OR,5.63;95% CI,1.23 - 25.76)以及喷洒杀虫剂(OR,7.71;95% CI,1.52 - 39.05)。

结论

大多数最受欢迎的莱姆病相关YouTube视频并非由公共卫生专业人员制作。负责任的报道和有创意的视频制作有助于莱姆病教育。与YouTube名人合作共同开发教育视频可能是未来的一个方向。

相似文献

1
Lyme Disease and YouTube : A Cross-Sectional Study of Video Contents.
Osong Public Health Res Perspect. 2017 Aug;8(4):289-292. doi: 10.24171/j.phrp.2017.8.4.10. Epub 2017 Aug 31.
2
Zika Virus on YouTube: An Analysis of English-language Video Content by Source.
J Prev Med Public Health. 2017 Mar;50(2):133-140. doi: 10.3961/jpmph.16.107. Epub 2017 Jan 26.
4
Eastern Equine Encephalitis and YouTube videos: A content analysis.
Infect Dis Health. 2018 Dec;23(4):197-202. doi: 10.1016/j.idh.2018.07.001. Epub 2018 Jul 29.
5
Attributes of Videos on YouTube Related to Cupping Therapy.
Altern Ther Health Med. 2018 Nov;24(6):32-37.
6
English language YouTube videos as a source of lead poisoning-related information: a cross-sectional study.
Int J Occup Environ Health. 2017 Jul;23(3):222-227. doi: 10.1080/10773525.2018.1467621. Epub 2018 May 2.
7
Public online information about tinnitus: A cross-sectional study of YouTube videos.
Noise Health. 2018 Jan-Feb;20(92):1-8. doi: 10.4103/nah.NAH_32_17.
9
YouTube as a source of information on skin bleaching: a content analysis.
Clin Exp Dermatol. 2018 Jun;43(4):399-403. doi: 10.1111/ced.13335. Epub 2017 Dec 18.
10
What do popular YouTube videos say about vaccines?
Child Care Health Dev. 2017 Jul;43(4):499-503. doi: 10.1111/cch.12442. Epub 2017 Jan 19.

本文引用的文献

2
Brave New Worlds: The Expanding Universe of Lyme Disease.
Vector Borne Zoonotic Dis. 2017 Sep;17(9):619-629. doi: 10.1089/vbz.2017.2127. Epub 2017 Jul 20.
3
Zika Virus on YouTube: An Analysis of English-language Video Content by Source.
J Prev Med Public Health. 2017 Mar;50(2):133-140. doi: 10.3961/jpmph.16.107. Epub 2017 Jan 26.
4
Lyme disease.
Rev Sci Tech. 2015 Aug;34(2):569-76. doi: 10.20506/rst.34.2.2380.
5
How can we prevent Lyme disease?
N Engl J Med. 2003 Jun 12;348(24):2424-30. doi: 10.1056/NEJMra021397.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验