Suppr超能文献

使用基于高效哈希表的封闭频繁项集挖掘技术诊断冠状动脉疾病。

Diagnosis of coronary artery disease using an efficient hash table based closed frequent itemsets mining.

机构信息

Department of Computer Applications, St.Xavier's Catholic College of Engineering, Chunkankadai, K.K. Dist., Nagercoil, 629003, Tamil Nadu, India.

出版信息

Med Biol Eng Comput. 2018 May;56(5):749-759. doi: 10.1007/s11517-017-1719-6. Epub 2017 Sep 14.

Abstract

This paper proposes an efficient hash table based closed frequent itemsets (HCFI) mining algorithm to envisage coronary artery disease early. HCFI algorithm generates closed frequent itemsets efficiently by performing intersection operation on transaction id's of itemset without considering the name of item/itemset. The employed hash table reduces search efficiency to O(1) or constant time. HCFI algorithm is applied on the UCI (University of California, Irvine) Cleveland dataset, a biological database of cardiovascular disease to generate closed frequent itemsets on the dataset. The findings of HCFI algorithm are (1) it determines a set of distinguished features to differentiate a 'healthy' and a 'sick' class. The features such as heart status being normal, oldpeak being less than or equal to 1.2, slope being up, number of vessels colored being zero, absence of exercise-induced angina, maximum heart rate achieved between 151 and 180 are referred as 'healthy' class. The features like chest pain are being asymptomatic, heart-status being reversible defect, slope being flat, and presence of exercise-induced-angina and serum cholesterol being greater than 240 indicate a presumption of heart disease to both genders. (2) It predicts that females have less chance of coronary heart disease than males. This algorithm is also compared with two other state-of-the-art-algorithms 'NAFCP' (N-list based algorithm for mining frequent closed patterns) and 'PredictiveApriori' to show the effectiveness of the proposed algorithm.

摘要

本文提出了一种基于高效哈希表的闭合频繁项集 (HCFI) 挖掘算法,以早期发现冠心病。HCFI 算法通过对项集的事务 ID 执行交集操作,而不考虑项/项集的名称,从而有效地生成闭合频繁项集。所采用的哈希表将搜索效率降低到 O(1)或常数时间。HCFI 算法应用于 UCI(加利福尼亚大学欧文分校)克利夫兰数据集,这是一个心血管疾病的生物数据库,用于在数据集上生成闭合频繁项集。HCFI 算法的发现结果为:(1) 它确定了一组有区别的特征来区分“健康”和“患病”类别。例如,心脏状态正常、oldpeak 小于或等于 1.2、斜率上升、血管数量为零、不存在运动引起的心绞痛、最大心率在 151 到 180 之间的特征被称为“健康”类别。而胸痛无症状、心脏状态为可逆缺陷、斜率为平坦、存在运动引起的心绞痛以及血清胆固醇大于 240 等特征则表明两性都有可能患有心脏病。(2) 它预测女性患冠心病的几率低于男性。该算法还与另外两种最先进的算法“NAFCP”(用于挖掘频繁闭合模式的 N 列表算法)和“PredictiveApriori”进行了比较,以显示所提出算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验