School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.
Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
J Physiol. 2017 Dec 1;595(23):7185-7202. doi: 10.1113/JP274926. Epub 2017 Oct 19.
Spinal parvalbumin-expressing interneurons have been identified as a critical source of inhibition to regulate sensory thresholds by gating mechanical inputs in the dorsal horn. This study assessed the inhibitory regulation of the parvalbumin-expressing interneurons, showing that synaptic and tonic glycinergic currents dominate, blocking neuronal or glial glycine transporters enhances tonic glycinergic currents, and these manipulations reduce excitability. Synaptically released glycine also enhanced tonic glycinergic currents and resulted in decreased parvalbumin-expressing interneuron excitability. Analysis of the glycine receptor properties mediating inhibition of parvalbumin neurons, as well as single channel recordings, indicates that heteromeric α/β subunit-containing receptors underlie both synaptic and tonic glycinergic currents. Our findings indicate that glycinergic inhibition provides critical control of excitability in parvalbumin-expressing interneurons in the dorsal horn and represents a pharmacological target to manipulate spinal sensory processing.
The dorsal horn (DH) of the spinal cord is an important site for modality-specific processing of sensory information and is essential for contextually relevant sensory experience. Parvalbumin-expressing inhibitory interneurons (PV+ INs) have functional properties and connectivity that enables them to segregate tactile and nociceptive information. Here we examine inhibitory drive to PV+ INs using targeted patch-clamp recording in spinal cord slices from adult transgenic mice that express enhanced green fluorescent protein in PV+ INs. Analysis of inhibitory synaptic currents showed glycinergic transmission is the dominant form of phasic inhibition to PV+ INs. In addition, PV+ INs expressed robust glycine-mediated tonic currents; however, we found no evidence for tonic GABAergic currents. Manipulation of extracellular glycine by blocking either, or both, the glial and neuronal glycine transporters markedly decreased PV+ IN excitability, as assessed by action potential discharge. This decreased excitability was replicated when tonic glycinergic currents were increased by electrically activating glycinergic synapses. Finally, we show that both phasic and tonic forms of glycinergic inhibition are mediated by heteromeric α/β glycine receptors. This differs from GABA receptors in the dorsal horn, where different receptor stoichiometries underlie phasic and tonic inhibition. Together these data suggest both phasic and tonic glycinergic inhibition regulate the output of PV+ INs and contribute to the processing and segregation of tactile and nociceptive information. The shared stoichiometry for phasic and tonic glycine receptors suggests pharmacology is unlikely to be able to selectively target each form of inhibition in PV+ INs.
已鉴定出背角中表达副甲状腺蛋白的中间神经元,作为通过门控机械输入来调节感觉阈值的抑制的关键来源。本研究评估了表达副甲状腺蛋白的中间神经元的抑制调节作用,表明突触和紧张性甘氨酸能电流占主导地位,阻断神经元或神经胶质甘氨酸转运体可增强紧张性甘氨酸能电流,这些操作可降低兴奋性。突触释放的甘氨酸也增强了紧张性甘氨酸能电流,导致表达副甲状腺蛋白的中间神经元兴奋性降低。对介导抑制副甲状腺蛋白神经元的甘氨酸受体特性的分析以及单通道记录表明,异源 α/β 亚基组成的受体是突触和紧张性甘氨酸能电流的基础。我们的研究结果表明,甘氨酸能抑制为背角中表达副甲状腺蛋白的中间神经元提供了兴奋性的关键控制,并且代表了操纵脊髓感觉处理的药理学靶标。
脊髓背角(DH)是感觉信息特定模式处理的重要部位,对于上下文相关的感觉体验至关重要。表达副甲状腺蛋白的抑制性中间神经元(PV+INs)具有使它们能够分离触觉和伤害性信息的功能特性和连接性。在这里,我们使用成年转基因小鼠脊髓切片中的靶向贴片钳记录检查对 PV+INs 的抑制性驱动,这些转基因小鼠在 PV+INs 中表达增强型绿色荧光蛋白。抑制性突触电流的分析表明,甘氨酸能传递是 PV+INs 的主要形式的相敏抑制。此外,PV+INs 表达了强大的甘氨酸介导的紧张性电流;然而,我们没有发现紧张性 GABA 能电流的证据。通过阻断胶质和神经元甘氨酸转运体来操纵细胞外甘氨酸,或者两者都显著降低了 PV+IN 的兴奋性,这可以通过动作电位放电来评估。当通过电激活甘氨酸能突触增加紧张性甘氨酸能电流时,这种兴奋性降低得到了复制。最后,我们表明,相敏和紧张性甘氨酸能抑制均由异源 α/β 甘氨酸受体介导。这与背角中的 GABA 受体不同,其中不同的受体组成在相敏和紧张性抑制中起作用。这些数据表明,相敏和紧张性甘氨酸能抑制均调节 PV+IN 的输出,并有助于触觉和伤害性信息的处理和分离。相敏和紧张性甘氨酸受体的共享组成意味着药理学不太可能能够选择性地针对 PV+INs 中的每种抑制形式。