Gerwin Philip M, Ricart Arbona Rodolfo J, Riedel Elyn R, Lepherd Michelle L, Henderson Ken S, Lipman Neil S
Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, USA; Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, USA; Comparative Medicine, Pfizer Worldwide Research and Development, Groton, Connecticut, USA.
Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, USA.
J Am Assoc Lab Anim Sci. 2017 Jan 1;56(1):32-41.
There is no consensus regarding the best practice for detecting murine pinworm infections. Initially, we evaluated 7 fecal concentration methods by using feces containing Aspiculuris tetraptera (AT) eggs (n = 20 samples per method). Sodium nitrate flotation, sodium nitrate centrifugation, Sheather sugar centrifugation, and zinc sulfate centrifugation detected eggs in 100% of samples; zinc sulfate flotation and water sedimentation detected eggs in 90%. All had better detection rates than Sheather sugar flotation (50%). To determine optimal detection methods, Swiss Webster mice were exposed to Syphacia obvelata (SO; n = 60) or AT (n = 60). We compared the following methods at days 0, 30, and 90, beginning 21 or 28 d after SO and AT exposure, respectively: fecal concentration (AT only), anal tape test (SO only), direct examination of intestinal contents (cecum and colon), Swiss roll histology (cecum and colon), and PCR analysis (pooled fur swab and feces). Detection rates for SO-exposed mice were: PCR analysis, 45%; Swiss roll histology, 30%; intestinal content exam, 27%; and tape test, 27%. The SO detection rate for PCR analysis was significantly greater than that for the tape test. Detection rates for AT-exposed mice were: intestinal content exam, 53%; PCR analysis, 33%; fecal flotation, 22%; and Swiss roll histology, 17%. The AT detection rate of PCR analysis combined with intestinal content examination was greater than for PCR analysis only and the AT detection rate of intestinal content examination was greater than for Swiss roll histology. Combining PCR analysis with intestinal content examination detected 100% of infected animals. No single test detected all positive animals. We recommend combining PCR analysis with intestinal content examination for optimal pinworm detection.
关于检测小鼠蛲虫感染的最佳方法,目前尚无共识。最初,我们通过使用含有四翼无刺线虫(AT)卵的粪便(每种方法20个样本)评估了7种粪便浓缩方法。硝酸钠漂浮法、硝酸钠离心法、希瑟糖离心法和硫酸锌离心法在100%的样本中检测到了虫卵;硫酸锌漂浮法和水沉淀法在90%的样本中检测到了虫卵。所有这些方法的检测率都高于希瑟糖漂浮法(50%)。为了确定最佳检测方法,将瑞士韦伯斯特小鼠暴露于欧氏尖线虫(SO;n = 60)或四翼无刺线虫(AT;n = 60)。我们在分别于暴露于SO和AT后21天或28天开始的第0、30和90天比较了以下方法:粪便浓缩法(仅用于AT)、肛门胶带试验(仅用于SO)、直接检查肠道内容物(盲肠和结肠)、瑞士卷组织学检查(盲肠和结肠)以及PCR分析(合并的皮毛拭子和粪便)。暴露于SO的小鼠的检测率为:PCR分析,45%;瑞士卷组织学检查,30%;肠道内容物检查,27%;胶带试验,27%。PCR分析对SO的检测率显著高于胶带试验。暴露于AT的小鼠的检测率为:肠道内容物检查,53%;PCR分析,33%;粪便漂浮法,22%;瑞士卷组织学检查,17%。PCR分析与肠道内容物检查相结合对AT的检测率高于仅进行PCR分析,且肠道内容物检查对AT的检测率高于瑞士卷组织学检查。将PCR分析与肠道内容物检查相结合检测出了100%的感染动物。没有单一的检测方法能检测出所有阳性动物。我们建议将PCR分析与肠道内容物检查相结合以实现最佳的蛲虫检测。