State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China.
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China.
J Colloid Interface Sci. 2018 Jan 1;509:209-218. doi: 10.1016/j.jcis.2017.09.018. Epub 2017 Sep 7.
We propose a facile and environment-friendly approach for the preparation of macroporous polyacrylamide (PAM) via thermal-initiated polymerization of aqueous foams that are stabilized by surface-modified silica nanoparticles. Cetyltrimethylammonium bromide (CTAB) is used to delicately adjust the surface amphiphilicity of silica to stabilize aqueous foams. The air bubble size and size distribution is affected by the wettability of silica particles, solid content and air volume fraction in the foams. The morphology of macroporous polymers is observed by a scanning electron microscope (SEM). The pore and pore throat size can be tailored effectively by varying the silica content and air volume fraction. A high porosity of 83% is achieved when the air volume fraction of the aqueous foam is 65%. PAM hydrogels obtained via polymerizing aqueous foams show pronounced advantage over the ones prepared from oil-in-water (O/W) emulsions in wastewater treatment because of their unique pore structure. This strategy would also be extended to prepare other macroporous polymers with well-defined pore structures.
我们提出了一种简便且环保的方法,通过表面改性的硅纳米粒子稳定的水乳液热引发聚合来制备大孔聚丙烯酰胺(PAM)。十六烷基三甲基溴化铵(CTAB)被用来精细调节硅纳米粒子的表面两亲性以稳定水乳液。气泡的大小和分布受硅纳米粒子的润湿性、乳液中的固含量和空气体积分数的影响。通过扫描电子显微镜(SEM)观察到大孔聚合物的形态。通过改变硅纳米粒子的含量和空气体积分数,可以有效地调节孔和孔喉的大小。当水乳液的空气体积分数为 65%时,可获得 83%的高孔隙率。与从油包水(O/W)乳液中制备的 PAM 水凝胶相比,通过聚合水乳液得到的 PAM 水凝胶在废水处理方面具有显著的优势,因为其具有独特的孔结构。该策略也可扩展到制备具有良好定义的孔结构的其他大孔聚合物。