The Institute of Scientific and Industrial Research (SANKEN), Osaka University , Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
ACS Appl Mater Interfaces. 2017 Oct 11;9(40):34844-34854. doi: 10.1021/acsami.7b08548. Epub 2017 Sep 27.
The photocatalytic performance of graphitic carbon nitride (g-CN) has been limited to low efficiency due to fast charge recombination. Here, we constructed g-CN nanosheets/TiO mesocrystals metal-free composite (g-CN NS/TMC) to promote the efficiency of charge separation. The photocatalytic H evolution experiments indicate that coupling g-CN NS with TMC increases photogenerated charge carriers in g-CN NS/TMC composite due to efficient charge separation. g-CN NS (31 wt %)/TMC shows the highest photocatalytic activity and the corresponding H evolution rate is 3.6 μ mol h. This value is 20 times larger than that of g-CN NS without any noble metal cocatalyst under visible-light irradiation (λ > 420 nm). The photocatalytic activity of g-CN NS/TMC (3.6 μmol h) is 7 times higher than that of g-CN NS/P25 (0.5 μ mol h), confirming the importance of strong interface interaction between two-dimensional g-CN NS and plate-shape TMC. Femtosecond time-resolved diffuse reflectance (fs-TDR) was employed to study the fundamental photophysical processes of bulk g-CN, g-CN NS, and g-CN/TMC composite which are essential to explain the photocatalytic activity. Using fs-TDR, we demonstrate that the photocatalytic activity depends on the increased driving force for photoinduced electron transfer and a higher percentage of photogenerated charges.
石墨相氮化碳(g-CN)的光催化性能由于快速电荷复合而受到限制,效率较低。在这里,我们构建了 g-CN 纳米片/TiO 微晶无金属复合材料(g-CN NS/TMC),以提高电荷分离效率。光催化 H2 析出实验表明,由于有效的电荷分离,将 g-CN NS 与 TMC 耦合会增加 g-CN NS/TMC 复合材料中的光生载流子。g-CN NS(31wt%)/TMC 表现出最高的光催化活性,相应的 H2 析出速率为 3.6 μmol h。这一值是在可见光照射下(λ>420nm)没有任何贵金属共催化剂的 g-CN NS 的 20 倍。g-CN NS/TMC(3.6 μmol h)的光催化活性是 g-CN NS/P25(0.5 μmol h)的 7 倍,这证实了二维 g-CN NS 和板状 TMC 之间强界面相互作用的重要性。飞秒时间分辨漫反射(fs-TDR)被用于研究体相 g-CN、g-CN NS 和 g-CN/TMC 复合材料的基本光物理过程,这对于解释光催化活性至关重要。通过 fs-TDR,我们证明光催化活性取决于光致电子转移的驱动力增加和更多比例的光生电荷。