Pasma J H, van Kordelaar J, de Kam D, Weerdesteyn V, Schouten A C, van der Kooij H
Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
Department of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands.
J Neuroeng Rehabil. 2017 Sep 15;14(1):97. doi: 10.1186/s12984-017-0299-x.
Closed loop system identification (CLSIT) is a method to disentangle the contribution of underlying systems in standing balance. We investigated whether taking into account lower leg muscle activation in CLSIT could improve the reliability and accuracy of estimated parameters identifying the underlying systems.
Standing balance behaviour of 20 healthy young participants was measured using continuous rotations of the support surface (SS). The dynamic balance behaviour obtained with CLSIT was expressed by sensitivity functions of the ankle torque, body sway and muscle activation of the lower legs to the SS rotation. Balance control models, 1) without activation dynamics, 2) with activation dynamics and 3) with activation dynamics and acceleration feedback, were fitted on the data of all possible combinations of the 3 sensitivity functions. The reliability of the estimated model parameters was represented by the mean relative standard errors of the mean (mSEM) of the estimated parameters, expressed for the basic parameters, the activation dynamics parameters and the acceleration feedback parameter. To investigate the accuracy, a model validation study was performed using simulated data obtained with a comprehensive balance control model. The accuracy of the estimated model parameters was described by the mean relative difference (mDIFF) between the estimated parameters and original parameters.
The experimental data showed a low mSEM of the basic parameters, activation dynamics parameters and acceleration feedback parameter by adding muscle activation in combination with activation dynamics and acceleration feedback to the fitted model. From the simulated data, the mDIFF of the basic parameters varied from 22.2-22.4% when estimated using the torque and body sway sensitivity functions. Adding the activation dynamics, acceleration feedback and muscle activation improved mDIFF to 13.1-15.1%.
Adding the muscle activation in combination with the activation dynamics and acceleration feedback to CLSIT improves the accuracy and reliability of the estimated parameters and gives the possibility to separate the neural time delay, electromechanical delay and the intrinsic and reflexive dynamics. To diagnose impaired balance more specifically, it is recommended to add electromyography (EMG) to body sway (with or without torque) measurements in the assessment of the underlying systems.
闭环系统识别(CLSIT)是一种用于区分站立平衡中潜在系统贡献的方法。我们研究了在CLSIT中考虑小腿肌肉激活是否能提高识别潜在系统的估计参数的可靠性和准确性。
通过支撑面(SS)的连续旋转来测量20名健康年轻参与者的站立平衡行为。CLSIT获得的动态平衡行为由踝关节扭矩、身体摆动以及小腿肌肉激活对SS旋转的灵敏度函数来表示。平衡控制模型,1)无激活动力学,2)有激活动力学,3)有激活动力学和加速度反馈,被拟合到三种灵敏度函数所有可能组合的数据上。估计模型参数的可靠性由估计参数的平均相对标准误差均值(mSEM)表示,针对基本参数、激活动力学参数和加速度反馈参数进行表述。为了研究准确性,使用通过综合平衡控制模型获得的模拟数据进行了模型验证研究。估计模型参数的准确性由估计参数与原始参数之间的平均相对差异(mDIFF)来描述。
实验数据表明,通过在拟合模型中加入肌肉激活以及激活动力学和加速度反馈,基本参数、激活动力学参数和加速度反馈参数的mSEM较低。从模拟数据来看,当使用扭矩和身体摆动灵敏度函数进行估计时,基本参数的mDIFF在22.2 - 22.4%之间变化。加入激活动力学、加速度反馈和肌肉激活后,mDIFF提高到了13.1 - 15.1%。
在CLSIT中加入肌肉激活以及激活动力学和加速度反馈可提高估计参数的准确性和可靠性,并有可能分离神经时间延迟、机电延迟以及内在和反射动力学。为了更具体地诊断平衡受损情况,建议在评估潜在系统时,在身体摆动(有或无扭矩)测量中加入肌电图(EMG)。