Suppr超能文献

心脏肉碱棕榈酰转移酶2的缺失导致雷帕霉素抵抗、不依赖乙酰化的肥大。

Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy.

作者信息

Pereyra Andrea S, Hasek Like Y, Harris Kate L, Berman Alycia G, Damen Frederick W, Goergen Craig J, Ellis Jessica M

机构信息

From the Departments of Nutrition Science and.

Biochemistry and.

出版信息

J Biol Chem. 2017 Nov 10;292(45):18443-18456. doi: 10.1074/jbc.M117.800839. Epub 2017 Sep 15.

Abstract

Cardiac hypertrophy is closely linked to impaired fatty acid oxidation, but the molecular basis of this link is unclear. Here, we investigated the loss of an obligate enzyme in mitochondrial long-chain fatty acid oxidation, carnitine palmitoyltransferase 2 (CPT2), on muscle and heart structure, function, and molecular signatures in a muscle- and heart-specific CPT2-deficient mouse (Cpt2) model. CPT2 loss in heart and muscle reduced complete oxidation of long-chain fatty acids by 87 and 69%, respectively, without altering body weight, energy expenditure, respiratory quotient, or adiposity. Cpt2M mice developed cardiac hypertrophy and systolic dysfunction, evidenced by a 5-fold greater heart mass, 60-90% reduction in blood ejection fraction relative to control mice, and eventual lethality in the absence of cardiac fibrosis. The hypertrophy-inducing mammalian target of rapamycin complex 1 (mTORC1) pathway was activated in Cpt2M hearts; however, daily rapamycin exposure failed to attenuate hypertrophy in Cpt2M mice. Lysine acetylation was reduced by ∼50% in Cpt2M hearts, but trichostatin A, a histone deacetylase inhibitor that improves cardiac remodeling, failed to attenuate Cpt2M hypertrophy. Strikingly, a ketogenic diet increased lysine acetylation in Cpt2M hearts 2.3-fold compared with littermate control mice fed a ketogenic diet, yet it did not improve cardiac hypertrophy. Together, these results suggest that a shift away from mitochondrial fatty acid oxidation initiates deleterious hypertrophic cardiac remodeling independent of fibrosis. The data also indicate that CPT2-deficient hearts are impervious to hypertrophy attenuators, that mitochondrial metabolism regulates cardiac acetylation, and that signals derived from alterations in mitochondrial metabolism are the key mediators of cardiac hypertrophic growth.

摘要

心脏肥大与脂肪酸氧化受损密切相关,但其分子机制尚不清楚。在此,我们研究了线粒体长链脂肪酸氧化中的一种必需酶——肉碱棕榈酰转移酶2(CPT2)缺失对肌肉和心脏特异性CPT2缺陷小鼠(Cpt2)模型的肌肉和心脏结构、功能及分子特征的影响。心脏和肌肉中CPT2的缺失分别使长链脂肪酸的完全氧化减少了87%和69%,而体重、能量消耗、呼吸商或肥胖程度均未改变。Cpt2M小鼠出现心脏肥大和收缩功能障碍,表现为心脏重量增加5倍,相对于对照小鼠,血液射血分数降低60 - 90%,最终在无心脏纤维化的情况下死亡。肥大诱导的哺乳动物雷帕霉素复合物1(mTORC1)通路在Cpt2M心脏中被激活;然而,每日给予雷帕霉素未能减轻Cpt2M小鼠的肥大。Cpt2M心脏中的赖氨酸乙酰化水平降低了约50%,但组蛋白去乙酰化酶抑制剂曲古抑菌素A虽可改善心脏重塑,却未能减轻Cpt2M小鼠的肥大。引人注目的是,与喂食生酮饮食的同窝对照小鼠相比,生酮饮食使Cpt2M心脏中的赖氨酸乙酰化增加了2.3倍,但并未改善心脏肥大。综上所述,这些结果表明,线粒体脂肪酸氧化的转变引发了有害的肥厚性心脏重塑,且与纤维化无关。数据还表明,CPT2缺陷的心脏对肥大减轻剂不敏感,线粒体代谢调节心脏乙酰化,线粒体代谢改变产生的信号是心脏肥大生长的关键介质。

相似文献

1
Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy.
J Biol Chem. 2017 Nov 10;292(45):18443-18456. doi: 10.1074/jbc.M117.800839. Epub 2017 Sep 15.
2
Octanoate is differentially metabolized in liver and muscle and fails to rescue cardiomyopathy in CPT2 deficiency.
J Lipid Res. 2021;62:100069. doi: 10.1016/j.jlr.2021.100069. Epub 2021 Mar 20.
4
Acute liver carnitine palmitoyltransferase I overexpression recapitulates reduced palmitate oxidation of cardiac hypertrophy.
Circ Res. 2013 Jan 4;112(1):57-65. doi: 10.1161/CIRCRESAHA.112.274456. Epub 2012 Sep 14.
6
Inhibition of carnitine palymitoyltransferase1b induces cardiac hypertrophy and mortality in mice.
Diabetes Obes Metab. 2014 Aug;16(8):757-60. doi: 10.1111/dom.12248. Epub 2014 Jan 16.
9
SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy.
Circulation. 2017 Nov 21;136(21):2051-2067. doi: 10.1161/CIRCULATIONAHA.117.028728. Epub 2017 Sep 25.

引用本文的文献

1
Mitophagy mitigates mitochondrial fatty acid β-oxidation deficient cardiomyopathy.
Nat Commun. 2025 Jul 1;16(1):5465. doi: 10.1038/s41467-025-60670-z.
2
Post-translational acylation of proteins in cardiac hypertrophy.
Nat Rev Cardiol. 2025 Apr 14. doi: 10.1038/s41569-025-01150-1.
3
Tissue specific roles of fatty acid oxidation.
Adv Biol Regul. 2025 Jan;95:101070. doi: 10.1016/j.jbior.2024.101070. Epub 2024 Dec 5.
4
Carnitine palmitoyltransferase 1 facilitates fatty acid oxidation in a non-cell-autonomous manner.
Cell Rep. 2024 Dec 24;43(12):115006. doi: 10.1016/j.celrep.2024.115006. Epub 2024 Dec 12.
5
Tip60-mediated Rheb acetylation links palmitic acid with mTORC1 activation and insulin resistance.
J Cell Biol. 2024 Dec 2;223(12). doi: 10.1083/jcb.202309090. Epub 2024 Oct 18.
6
Gene expression and ultra-structural evidence for metabolic derangement in the primary mitral regurgitation heart.
Eur Heart J Open. 2024 May 1;4(3):oeae034. doi: 10.1093/ehjopen/oeae034. eCollection 2024 May.
7
A review of fatty acid oxidation disorder mouse models.
Mol Genet Metab. 2024 May;142(1):108351. doi: 10.1016/j.ymgme.2024.108351. Epub 2024 Feb 23.
9
Metabolic Drivers and Rescuers of Heart Failure.
Mo Med. 2023 Sep-Oct;120(5):354-358.
10
Metabolic adaptations in pressure overload hypertrophic heart.
Heart Fail Rev. 2024 Jan;29(1):95-111. doi: 10.1007/s10741-023-10353-y. Epub 2023 Sep 28.

本文引用的文献

1
Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation.
Cell Rep. 2016 Jun 28;16(1):201-212. doi: 10.1016/j.celrep.2016.05.062. Epub 2016 Jun 16.
2
HDAC inhibition: A novel therapeutic approach for attenuating heart failure by suppressing cardiac remodeling.
Int J Cardiol. 2016 Jul 1;214:41-2. doi: 10.1016/j.ijcard.2016.03.188. Epub 2016 Mar 26.
3
Rapamycin Inhibits Cardiac Hypertrophy by Promoting Autophagy via the MEK/ERK/Beclin-1 Pathway.
Front Physiol. 2016 Mar 18;7:104. doi: 10.3389/fphys.2016.00104. eCollection 2016.
4
Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts.
Aging (Albany NY). 2016 Feb;8(2):314-27. doi: 10.18632/aging.100881.
5
The Role of Obesity in the Development of Left Ventricular Hypertrophy Among Children and Adolescents.
Curr Hypertens Rep. 2016 Jan;18(1):3. doi: 10.1007/s11906-015-0608-3.
6
MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1251-7. doi: 10.1093/nar/gkv1003. Epub 2015 Oct 7.
7
Relationship Between Left Ventricular Structural and Metabolic Remodeling in Type 2 Diabetes.
Diabetes. 2016 Jan;65(1):44-52. doi: 10.2337/db15-0627. Epub 2015 Oct 5.
8
Mitochondrion as a Target for Heart Failure Therapy- Role of Protein Lysine Acetylation.
Circ J. 2015;79(9):1863-70. doi: 10.1253/circj.CJ-15-0742. Epub 2015 Aug 4.
10
HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes.
Epigenetics. 2015;10(5):418-30. doi: 10.1080/15592294.2015.1024406. Epub 2015 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验