Davis Austen L, Clowers Brian H
Department of Chemistry, Washington State University, Pullman, WA 99164, United States.
Department of Chemistry, Washington State University, Pullman, WA 99164, United States.
Talanta. 2018 Jan 1;176:140-150. doi: 10.1016/j.talanta.2017.07.090. Epub 2017 Aug 1.
Significant challenges exist when characterizing f-element complexes in solution using traditional approaches such as electrochemical and spectroscopic techniques as they do not always capture information for lower abundance species. However, provided a metal-complex with sufficient stability, soft ionization techniques such as electrospray offer a means to quantify and probe the characteristics of such systems using mass spectrometry. Unfortunately, the gas-phase species observed in ESI-MS systems do not always reflect the solution phase distributions due to the inherent electrochemical mechanism of the electrospray process, ion transfer from ambient to low pressures conditions, and other factors that are related to droplet evaporation. Even for simple systems (e.g. hydrated cations), it is not always clear whether the distribution observed reflects the solution phase populations or whether it is simply a result of the ionization process. This complexity is further compounded in mixed solvent systems and when multiply charged species are present. Despite these challenges, the benefits of mass spectrometry with respect to speed, sensitivity, and the ability to resolve isotopes continue to drive efforts to develop techniques for the speciation of metal complexes. Using an electrospray ionization atmospheric pressure ion mobility mass spectrometer (ESI-apIMS-MS), we demonstrate an approach to stabilize simple uranyl complexes during the ionization process and mobility separation to aid speciation and isotope profile analysis. Specifically, we outline and demonstrate the capacity of ESI-apIMS-MS methods to measure mobilities of different uranyl species, in simple mixtures, by promoting stable gas phase conformations with the addition of sulfoxides (i.e. dimethyl sulfoxide (DMSO), dibutyl sulfoxide (DBSO), and methyl phenyl sulfoxide (MPSO)). Addition of these sulfoxides, as observed in the mass spectrum and mobility domain, produce stable gas-phase conformations that enable the observation of the counter anion pair while minimizing the range of ligand exchange events as the ionized complex enters the gas-phase. Other enhancements include improved data acquisition times by applying multiplexing approaches to the IMS Bradbury-Nielsen (BN) gate to realize increased ion transmission and improve ion statistics measured at the m/z detector. Analyte identification using this approach is based on a multitude of combined measured gas-phase ion metrics, which include mass measurements, isotope profiling, and experimentally determined reduced mobilities measured at the low-field limit (<2 E/N). Though geared initially towards uranyl complexes, this approach may find application in fields where both chemical speciation and isotopic profiles provide diagnostic information for a given metal.
使用电化学和光谱技术等传统方法表征溶液中的f元素配合物时,存在重大挑战,因为这些方法并不总能获取低丰度物种的信息。然而,对于具有足够稳定性的金属配合物,电喷雾等软电离技术提供了一种利用质谱法对这类体系进行定量和探测其特性的手段。不幸的是,由于电喷雾过程固有的电化学机制、离子从常压向低压条件的转移以及与液滴蒸发相关的其他因素,在电喷雾电离质谱(ESI-MS)系统中观察到的气相物种并不总能反映溶液相的分布情况。即使对于简单体系(如水合阳离子),也不总是清楚所观察到的分布是反映了溶液相的粒子数,还是仅仅是电离过程导致的结果。在混合溶剂体系以及存在多电荷物种时,这种复杂性会进一步加剧。尽管存在这些挑战,质谱在速度、灵敏度以及分辨同位素的能力方面的优势,仍继续推动着金属配合物形态分析技术的发展。我们使用电喷雾电离大气压离子淌度质谱仪(ESI-apIMS-MS),展示了一种在电离过程和淌度分离过程中稳定简单铀酰配合物的方法,以辅助形态分析和同位素谱分析。具体而言,我们概述并展示了ESI-apIMS-MS方法通过添加亚砜(即二甲基亚砜(DMSO)、二丁基亚砜(DBSO)和甲基苯基亚砜(MPSO))促进稳定的气相构象,从而测量简单混合物中不同铀酰物种淌度的能力。如在质谱和淌度域中所观察到的,添加这些亚砜会产生稳定的气相构象,使得在电离后的配合物进入气相时能够观察到抗衡阴离子对,同时将配体交换事件的范围降至最低。其他改进包括通过对离子淌度谱仪的布拉德伯里 - 尼尔森(BN)门应用复用方法来缩短数据采集时间,以实现更高的离子传输效率,并改善在m/z检测器处测量的离子统计数据。使用这种方法进行分析物鉴定基于多种综合测量的气相离子指标,这些指标包括质量测量、同位素谱分析以及在低场极限(<2 E/N)下实验测定的折合淌度。尽管该方法最初是针对铀酰配合物的,但它可能在化学形态分析和同位素谱都能为给定金属提供诊断信息的领域中得到应用。