Faraday Materials Laboratory, Materials Research Center, Indian Institute of Science , C. V. Raman Avenue, Bangalore 560012, India.
Department of Chemistry, Bar-Ilan University , Ramat-Gan 5290002, Israel.
ACS Appl Mater Interfaces. 2017 Oct 11;9(40):34961-34969. doi: 10.1021/acsami.7b10637. Epub 2017 Sep 26.
Sodium iron fluorophosphate (NaFePOF) was synthesized by economic solvothermal combustion technique using Fe precursors, developing one-step carbon-coated homogeneous product. Synchrotron diffraction and Mössbauer spectroscopy revealed the formation of single-phase product assuming an orthorhombic structure (s.g. Pbcn) with Fe species. This Fe precursor derived NaFePOF exhibited reversible Na (de)intercalation with discharge capacity of 100 mAh/g at a rate of C/10 involving flat Fe/Fe redox plateaus located at 2.92 and 3.05 V (vs Na/Na). It delivered good cycling stability and rate kinetics at room temperature. The stability of NaFePOF cathode was further verified by electrochemical impedance spectroscopy at different stages of galvanostatic analysis. Bond valence site energy (BVSE) calculations revealed the existence of 2-dimensional Na percolation pathways in the a-c plane with a moderate migration barrier of 0.6 eV. Combustion synthesized NaFePOF forms an economically viable sodium battery material. Although the capacity of this cathode is relatively low, this study continues systematic work, which attempts to broaden the scope of reversible sodium insertion materials.
采用经济的溶剂热燃烧技术,使用铁前体合成了磷酸铁钠(NaFePOF),开发了一步碳包覆均相产物。同步辐射衍射和穆斯堡尔光谱表明,形成了具有 Fe 物种的单相产物,假设为具有正交结构(s.g. Pbcn)。这种由 Fe 前体衍生的 NaFePOF 表现出可逆的 Na(脱)插层,在 C/10 的速率下具有 100 mAh/g 的放电容量,涉及位于 2.92 和 3.05 V(相对于 Na/Na)的平坦 Fe/Fe 氧化还原平台。它在室温下表现出良好的循环稳定性和倍率动力学性能。通过恒电流分析不同阶段的电化学阻抗谱进一步验证了 NaFePOF 正极的稳定性。键价态能(BVSE)计算表明,在 a-c 平面上存在二维 Na 渗流途径,迁移势垒适中,为 0.6 eV。燃烧合成的 NaFePOF 形成了一种具有经济可行性的钠离子电池材料。尽管这种阴极的容量相对较低,但本研究继续进行系统的工作,试图拓宽可逆钠离子插入材料的范围。