State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences , Shanghai 200083, China.
ACS Nano. 2017 Oct 24;11(10):9854-9862. doi: 10.1021/acsnano.7b03569. Epub 2017 Sep 22.
Highly sensitive photodetection even approaching the single-photon level is critical to many important applications. Graphene-based hybrid phototransistors are particularly promising for high-sensitivity photodetection because they have high photoconductive gain due to the high mobility of graphene. Given their remarkable optoelectronic properties and solution-based processing, colloidal quantum dots (QDs) have been preferentially used to fabricate graphene-based hybrid phototransistors. However, the resulting QD/graphene hybrid phototransistors face the challenge of extending the photodetection into the technologically important mid-infrared (MIR) region. Here, we demonstrate the highly sensitive MIR photodetection of QD/graphene hybrid phototransistors by using plasmonic silicon (Si) QDs doped with boron (B). The localized surface plasmon resonance (LSPR) of B-doped Si QDs enhances the MIR absorption of graphene. The electron-transition-based optical absorption of B-doped Si QDs in the ultraviolet (UV) to near-infrared (NIR) region additionally leads to photogating for graphene. The resulting UV-to-MIR ultrabroadband photodetection of our QD/graphene hybrid phototransistors features ultrahigh responsivity (up to ∼10 A/W), gain (up to ∼10), and specific detectivity (up to ∼10 Jones).
高灵敏度的光电探测,甚至接近单光子水平,对许多重要的应用至关重要。基于石墨烯的混合光电晶体管对于高灵敏度光电探测特别有前景,因为由于石墨烯的高迁移率,它们具有高光电导增益。鉴于胶体量子点 (QD) 具有显著的光电性能和溶液处理能力,它们被优先用于制造基于石墨烯的混合光电晶体管。然而,由此产生的 QD/石墨烯混合光电晶体管面临着将光电探测扩展到技术上重要的中红外 (MIR) 区域的挑战。在这里,我们通过使用掺杂硼 (B) 的等离子体硅 (Si) QD 演示了 QD/石墨烯混合光电晶体管的高灵敏度 MIR 光电探测。B 掺杂 Si QD 的局域表面等离子体共振 (LSPR) 增强了石墨烯的 MIR 吸收。B 掺杂 Si QD 在紫外 (UV) 到近红外 (NIR) 区域的基于电子跃迁的光学吸收还导致了石墨烯的光栅效应。我们的 QD/石墨烯混合光电晶体管的 UV 到 MIR 超宽频带光电探测具有超高响应率(高达约 10 A/W)、增益(高达约 10)和特定探测率(高达约 10 琼斯)。