Yang Jun, Zhang Yufei, Zhang Yizhou, Shao Jinjun, Geng Hongbo, Zhang Yu, Zheng Yun, Ulaganathan Mani, Dai Zhengfei, Li Bing, Zong Yun, Dong Xiaochen, Yan Qingyu, Huang Wei
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
Small. 2017 Nov;13(42). doi: 10.1002/smll.201702181. Epub 2017 Sep 18.
2D Sulfur-doped TiSe /Fe O (named as S-TiSe /Fe O ) heterostructures are synthesized successfully based on a facile oil phase process. The Fe O nanoparticles, with an average size of 8 nm, grow uniformly on the surface of S-doped TiSe (named as S-TiSe ) nanoplates (300 nm in diameter and 15 nm in thickness). These heterostructures combine the advantages of both S-TiSe with good electrical conductivity and Fe O with high theoretical Li storage capacity. As demonstrated potential applications for energy storage, the S-TiSe /Fe O heterostructures possess high reversible capacities (707.4 mAh g at 0.1 A g during the 100th cycle), excellent cycling stability (432.3 mAh g after 200 cycles at 5 A g ), and good rate capability (e.g., 301.7 mAh g at 20 A g ) in lithium-ion batteries. As for sodium-ion batteries, the S-TiSe /Fe O heterostructures also maintain reversible capacities of 402.3 mAh g at 0.1 A g after 100 cycles, and a high rate capacity of 203.3 mAh g at 4 A g .
基于一种简便的油相法成功合成了二维硫掺杂的TiSe₂/Fe₃O₄(命名为S-TiSe₂/Fe₃O₄)异质结构。平均尺寸为8纳米的Fe₃O₄纳米颗粒均匀生长在硫掺杂的TiSe₂(命名为S-TiSe₂)纳米片(直径300纳米,厚度15纳米)的表面。这些异质结构结合了具有良好导电性的S-TiSe₂和具有高理论锂存储容量的Fe₃O₄的优点。作为储能的潜在应用实例,S-TiSe₂/Fe₃O₄异质结构在锂离子电池中具有高可逆容量(第100次循环时在0.1 A/g下为707.4 mAh/g)、优异的循环稳定性(在5 A/g下200次循环后为432.3 mAh/g)以及良好的倍率性能(例如在20 A/g下为301.7 mAh/g)。对于钠离子电池,S-TiSe₂/Fe₃O₄异质结构在100次循环后在0.1 A/g下也保持402.3 mAh/g的可逆容量,以及在4 A/g下203.3 mAh/g的高倍率容量。