Suppr超能文献

胶质母细胞瘤新型靶向治疗方法的快速鉴定与验证:一种体内外联合药物组学模型

Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.

作者信息

Daher Ahmad, de Groot John

机构信息

Hartford HealthCare Cancer Institute, 85 Seymour Street, Suite 227, Hartford, CT 06106, United States.

The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States.

出版信息

Exp Neurol. 2018 Jan;299(Pt B):281-288. doi: 10.1016/j.expneurol.2017.09.006. Epub 2017 Sep 18.

Abstract

Tumor heterogeneity is a major factor in glioblastoma's poor response to therapy and seemingly inevitable recurrence. Only two glioblastoma drugs have received Food and Drug Administration approval since 1998, highlighting the urgent need for new therapies. Profiling "omics" analyses have helped characterize glioblastoma molecularly and have thus identified multiple molecular targets for precision medicine. These molecular targets have influenced clinical trial design; many "actionable" mutation-focused trials are underway, but because they have not yet led to therapeutic breakthroughs, new strategies for treating glioblastoma, especially those with a pharmacological functional component, remain in high demand. In that regard, high-throughput screening that allows for expedited preclinical drug testing and the use of GBM models that represent tumor heterogeneity more accurately than traditional cancer cell lines is necessary to maximize the successful translation of agents into the clinic. High-throughput screening has been successfully used in the testing, discovery, and validation of potential therapeutics in various cancer models, but it has not been extensively utilized in glioblastoma models. In this report, we describe the basic aspects of high-throughput screening and propose a modified high-throughput screening model in which ex vivo and in vivo drug testing is complemented by post-screening pharmacological, pan-omic analysis to expedite anti-glioma drugs' preclinical testing and develop predictive biomarker datasets that can aid in personalizing glioblastoma therapy and inform clinical trial design.

摘要

肿瘤异质性是胶质母细胞瘤对治疗反应不佳且似乎不可避免复发的主要因素。自1998年以来,仅有两种胶质母细胞瘤药物获得了美国食品药品监督管理局的批准,这凸显了对新疗法的迫切需求。“组学”分析有助于从分子层面表征胶质母细胞瘤,从而确定了多个精准医学的分子靶点。这些分子靶点影响了临床试验设计;许多以可操作的突变为重点的试验正在进行,但由于尚未带来治疗突破,治疗胶质母细胞瘤的新策略,尤其是那些具有药理功能成分的策略,仍然需求旺盛。在这方面,高通量筛选能够加快临床前药物测试,并且使用比传统癌细胞系更准确地代表肿瘤异质性的胶质母细胞瘤模型,对于将药物成功转化到临床中至关重要。高通量筛选已成功用于各种癌症模型中潜在治疗药物的测试、发现和验证,但尚未在胶质母细胞瘤模型中广泛应用。在本报告中,我们描述了高通量筛选的基本方面,并提出了一种改进的高通量筛选模型,其中体外和体内药物测试通过筛选后的药理学、全组学分析进行补充,以加快抗胶质瘤药物的临床前测试,并开发可有助于胶质母细胞瘤治疗个性化和为临床试验设计提供信息的预测性生物标志物数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验