Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy.
Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Cell Signal. 2017 Dec;40:116-124. doi: 10.1016/j.cellsig.2017.09.007. Epub 2017 Sep 18.
The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D-σ heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ receptors (σRs) in the cocaine-provoked amplification of D receptor (DR)-induced reduction of K-evoked [H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D-likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K-evoked [H]-DA and glutamate release from rat striatal synaptosomes. The σR antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K-evoked [H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K-evoked [H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σR and DR HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus DR singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D-σR complexes on the rat striatal DA and glutamate nerve terminals and functional D-σR-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated DR signaling.
纳米摩尔浓度的可卡因可能不会抑制多巴胺转运体的活性,其对纹状体 D-σ 异源受体复合物及其对 Gi/o 的抑制信号的影响已在大鼠纹状体突触体和 HEK293T 细胞中进行了测试。此外,还研究了 σ 受体 (σRs) 在可卡因引起的 D 受体 (DR) 诱导的减少 K 诱发的 [H]-DA 和谷氨酸释放的放大作用中的可能作用。多巴胺 D 样受体激动剂喹吡罗(10nM-1μM)浓度依赖性地减少了大鼠纹状体突触体 K 诱发的 [H]-DA 和谷氨酸的释放。σR 拮抗剂 BD1063(100nM)放大了喹吡罗(10 和 100nM)对 K 诱发的 [H]-DA 的作用,但对谷氨酸没有作用。纳摩尔浓度的可卡因显著增强了喹吡罗(100nM)诱导的大鼠纹状体突触体 K 诱发的 [H]-DA 和谷氨酸释放的减少。在 BD1063(10nM)存在的情况下,可卡因未能放大喹吡罗(100nM)诱导的作用。在共转染的 σR 和 DR HEK293T 细胞中,与单独转染 DR 的细胞相比,喹吡罗抑制 CREB 信号的效力降低。在可卡因(100nM)存在的情况下,喹吡罗抑制 CREB 信号的效力得到恢复。在 D 单独转染的细胞中,可卡因(100nM 和 10μM)对喹吡罗抑制 CREB 信号的抑制效力没有调节作用。这些结果使我们假设在大鼠纹状体 DA 和谷氨酸神经末梢上存在功能性 D-σR 复合物,并且在纹状体 DA 末梢上存在功能性 D-σR-DA 转运体复合物。纳摩尔浓度的可卡因似乎改变了这些复合物中的变构受体-受体相互作用,从而增强了 Gi/o 介导的 DR 信号。