Suppr超能文献

无领导分泌肽信号分子改变了人类细菌病原体的全局基因表达并增加了其毒力。

Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen.

机构信息

Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030.

Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030.

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8498-E8507. doi: 10.1073/pnas.1705972114. Epub 2017 Sep 18.

Abstract

Successful pathogens use complex signaling mechanisms to monitor their environment and reprogram global gene expression during specific stages of infection. Group A (GAS) is a major human pathogen that causes significant disease burden worldwide. A secreted cysteine protease known as streptococcal pyrogenic exotoxin B (SpeB) is a key virulence factor that is produced abundantly during infection and is critical for GAS pathogenesis. Although identified nearly a century ago, the molecular basis for growth phase control of gene expression remains unknown. We have discovered that GAS uses a previously unknown peptide-mediated intercellular signaling system to control SpeB production, alter global gene expression, and enhance virulence. GAS produces an eight-amino acid leaderless peptide [SpeB-inducing peptide (SIP)] during high cell density and uses the secreted peptide for cell-to-cell signaling to induce population-wide expression. The SIP signaling pathway includes peptide secretion, reimportation into the cytosol, and interaction with the intracellular global gene regulator Regulator of Protease B (RopB), resulting in SIP-dependent modulation of DNA binding and regulatory activity of RopB. Notably, SIP signaling causes differential expression of ∼14% of GAS core genes. Several genes that encode toxins and other virulence genes that enhance pathogen dissemination and infection are significantly up-regulated. Using three mouse infection models, we show that the SIP signaling pathway is active during infection and contributes significantly to GAS pathogenesis at multiple host anatomic sites. Together, our results delineate the molecular mechanisms involved in a previously undescribed virulence regulatory pathway of an important human pathogen and suggest new therapeutic strategies.

摘要

成功的病原体利用复杂的信号机制来监测其环境,并在感染的特定阶段重新编程全局基因表达。A 组链球菌(GAS)是一种主要的人类病原体,在全球范围内造成了巨大的疾病负担。一种分泌的半胱氨酸蛋白酶,即链球菌致热外毒素 B(SpeB),是一种关键的毒力因子,在感染期间大量产生,对 GAS 发病机制至关重要。尽管它在近一个世纪前就被发现了,但基因表达的生长阶段控制的分子基础仍然未知。我们发现,GAS 使用一种以前未知的肽介导的细胞间信号系统来控制 SpeB 的产生,改变全局基因表达,并增强毒力。GAS 在高密度细胞时产生一个由八个氨基酸组成的无先导肽[SpeB 诱导肽(SIP)],并利用分泌的肽进行细胞间信号传递,诱导群体表达。SIP 信号通路包括肽分泌、再导入细胞质和与细胞内全局基因调节剂蛋白酶 B 调节剂(RopB)相互作用,导致 SIP 依赖性调节 RopB 的 DNA 结合和调节活性。值得注意的是,SIP 信号导致 GAS 核心基因约 14%的差异表达。编码毒素和其他增强病原体传播和感染的毒力基因的几个基因显著上调。使用三种小鼠感染模型,我们表明 SIP 信号通路在感染过程中活跃,并在多个宿主解剖部位显著促进 GAS 发病机制。总之,我们的结果描绘了一个以前未描述的重要人类病原体的毒力调节途径所涉及的分子机制,并提出了新的治疗策略。

相似文献

1
Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8498-E8507. doi: 10.1073/pnas.1705972114. Epub 2017 Sep 18.
5
Structural and functional analysis of RopB: a major virulence regulator in Streptococcus pyogenes.
Mol Microbiol. 2016 Mar;99(6):1119-33. doi: 10.1111/mmi.13294. Epub 2016 Feb 19.
7
Group A streptococcal cysteine protease cleaves epithelial junctions and contributes to bacterial translocation.
J Biol Chem. 2013 May 10;288(19):13317-24. doi: 10.1074/jbc.M113.459875. Epub 2013 Mar 26.
10
RNase Y-mediated regulation of the streptococcal pyrogenic exotoxin B.
RNA Biol. 2018;15(10):1336-1347. doi: 10.1080/15476286.2018.1532253. Epub 2018 Oct 18.

引用本文的文献

1
RNA-binding protein YebC enhances translation of proline-rich amino acid stretches in bacteria.
Nat Commun. 2025 Jul 7;16(1):6262. doi: 10.1038/s41467-025-60687-4.
2
Environmental pH controls antimicrobial production by human probiotic .
J Bacteriol. 2025 Jun 24;207(6):e0005925. doi: 10.1128/jb.00059-25. Epub 2025 Jun 2.
4
Molecular Targets in for the Development of Anti-Virulence Agents.
Genes (Basel). 2024 Sep 4;15(9):1166. doi: 10.3390/genes15091166.
5
Engineered probiotic overcomes pathogen defences using signal interference and antibiotic production to treat infection in mice.
Nat Microbiol. 2024 Feb;9(2):502-513. doi: 10.1038/s41564-023-01583-9. Epub 2024 Jan 16.
6
Microbial murmurs - decoding hidden conversations between bacteria.
Nat Rev Microbiol. 2024 Jan;22(1):3. doi: 10.1038/s41579-023-00991-2.
7
Streptococcal peptides and their roles in host-microbe interactions.
Front Cell Infect Microbiol. 2023 Oct 16;13:1282622. doi: 10.3389/fcimb.2023.1282622. eCollection 2023.
10
A Streptomyces tendae Specialized Metabolite Inhibits Quorum Sensing in Group A Streptococcus.
Microbiol Spectr. 2023 Aug 17;11(4):e0527922. doi: 10.1128/spectrum.05279-22. Epub 2023 Jun 7.

本文引用的文献

2
Communication between viruses guides lysis-lysogeny decisions.
Nature. 2017 Jan 26;541(7638):488-493. doi: 10.1038/nature21049. Epub 2017 Jan 18.
3
Quorum sensing signal-response systems in Gram-negative bacteria.
Nat Rev Microbiol. 2016 Aug 11;14(9):576-88. doi: 10.1038/nrmicro.2016.89.
4
The target spectrum of SdsR small RNA in Salmonella.
Nucleic Acids Res. 2016 Dec 1;44(21):10406-10422. doi: 10.1093/nar/gkw632. Epub 2016 Jul 12.
6
Structural and functional analysis of RopB: a major virulence regulator in Streptococcus pyogenes.
Mol Microbiol. 2016 Mar;99(6):1119-33. doi: 10.1111/mmi.13294. Epub 2016 Feb 19.
8
Identification and Co-complex Structure of a New S. pyogenes SpeB Small Molecule Inhibitor.
Biochemistry. 2015 Jul 21;54(28):4365-73. doi: 10.1021/acs.biochem.5b00607. Epub 2015 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验