Ronchi Virginia P, Kim Elizabeth D, Summa Christopher M, Klein Jennifer M, Haas Arthur L
From the Department of Biochemistry and Molecular Biology and.
the Department of Computer Science, University of New Orleans, New Orleans, Louisiana 70148.
J Biol Chem. 2017 Nov 3;292(44):18006-18023. doi: 10.1074/jbc.M117.813477. Epub 2017 Sep 18.
To understand the mechanism for assembly of Lys-linked polyubiquitin degradation signals, we previously demonstrated that the E6AP/UBE3A ligase harbors two functionally distinct E2∼ubiquitin-binding sites: a high-affinity Site 1 required for E6AP Cys∼ubiquitin thioester formation and a canonical Site 2 responsible for subsequent chain elongation. Ordered binding to Sites 1 and 2 is here revealed by observation of UbcH7∼ubiquitin-dependent substrate inhibition of chain formation at micromolar concentrations. To understand substrate inhibition, we exploited the PatchDock algorithm to model UbcH7∼ubiquitin bound to Site 1, validated by chain assembly kinetics of selected point mutants. The predicted structure buries an extensive solvent-excluded surface bringing the UbcH7∼ubiquitin thioester bond within 6 Å of the Cys nucleophile. Modeling onto the active E6AP trimer suggests that substrate inhibition arises from steric hindrance between Sites 1 and 2 of adjacent subunits. Confirmation that Sites 1 and 2 function in was demonstrated by examining the effect of E6APC820A on wild-type activity and single-turnover pulse-chase kinetics. A cyclic proximal indexation model proposes that Sites 1 and 2 function in tandem to assemble thioester-linked polyubiquitin chains from the proximal end attached to Cys before stochastic transfer to the target protein. Non-reducing SDS-PAGE confirms assembly of the predicted Cys-linked I-polyubiquitin thioester intermediate. Other studies suggest that Glu serves as a general base to generate the Cys thiolate within the low dielectric binding interface and Arg functions to orient Glu and to stabilize the incipient anionic transition state during thioester exchange.
为了解赖氨酸连接的多聚泛素降解信号的组装机制,我们之前证明E6AP/UBE3A连接酶含有两个功能不同的E2泛素结合位点:E6AP半胱氨酸泛素硫酯形成所需的高亲和力位点1和负责后续链延伸的典型位点2。通过观察微摩尔浓度下UbcH7泛素依赖性底物对链形成的抑制作用,揭示了对位点1和位点2的有序结合。为了解底物抑制作用,我们利用PatchDock算法对与位点1结合的UbcH7泛素进行建模,并通过所选点突变体的链组装动力学进行验证。预测结构掩埋了一个广泛的溶剂排除表面,使UbcH7~泛素硫酯键位于半胱氨酸亲核试剂的6 Å范围内。在活性E6AP三聚体上进行建模表明,底物抑制作用源于相邻亚基的位点1和位点2之间的空间位阻。通过检查E6APC820A对野生型活性和单周转脉冲追踪动力学的影响,证实了位点1和位点2的功能。一个循环近端索引模型提出,位点1和位点2协同作用,从连接到半胱氨酸的近端组装硫酯连接的多聚泛素链,然后随机转移到靶蛋白上。非还原SDS-PAGE证实了预测的半胱氨酸连接的I-多聚泛素硫酯中间体的组装。其他研究表明,谷氨酸作为一般碱在低介电结合界面内生成半胱氨酸硫醇盐,而精氨酸则起到定向谷氨酸并在硫酯交换过程中稳定初始阴离子过渡态的作用。