Suppr超能文献

气升式生物反应器的计算流体动力学(CFD)分析:导流筒结构对流体动力学、细胞悬浮和剪切速率的影响。

Computational fluid dynamics (CFD) analysis of airlift bioreactor: effect of draft tube configurations on hydrodynamics, cell suspension, and shear rate.

机构信息

Environmental Biotechnology and Genomics Division, DST Inspire Faculty, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.

出版信息

Bioprocess Biosyst Eng. 2018 Jan;41(1):31-45. doi: 10.1007/s00449-017-1841-8. Epub 2017 Sep 19.

Abstract

The biomass productivity of microalgae cells mainly depends on the hydrodynamics of airlift bioreactor (ABR). Thus, the hydrodynamics of concentric tube ABR was initially studied using two-phase three-dimensional CFD simulations with the Eulerian-Lagrangian approach. The performance of ABR (17 L) was examined for different configurations of the draft tube using various drag models such as Grace, Ishii-Zuber, and Schiller-Naumann. The gas holdups in the riser and the downcomer were well predicted using E-L approach. This work was further extended to study the dispersion of microalgae cells in the ABR using three-phase CFD simulations. In this model (combined E-E and E-L), the solid phase (microalgae cells) was dispersed into the continuous liquid phase (water), while the gas phase (air bubbles) was modeled as a particle transport fluid. The effect of non-drag forces such as virtual mass and lift forces was also considered. Flow regimes were explained on the basis of the relative gas holdup distribution in the riser and the downcomer. The microalgae cells were found in suspension for the superficial gas velocities of 0.02-0.04 m s experiencing an average shear of 23.52-44.56 s which is far below the critical limit of cell damage.

摘要

微藻细胞的生物量生产力主要取决于气升式生物反应器(ABR)的流体动力学。因此,最初使用欧拉-拉格朗日方法的两相三维 CFD 模拟来研究同心管 ABR 的流体动力学。使用各种曳力模型(如 Grace、Ishii-Zuber 和 Schiller-Naumann),通过不同的导流管配置来检查 ABR(17 L)的性能。E-L 方法很好地预测了上升管和下降管中的气体含气率。这项工作进一步扩展到使用三相 CFD 模拟来研究微藻细胞在 ABR 中的分散。在这个模型(E-E 和 E-L 的组合)中,固体相(微藻细胞)分散到连续的液相(水)中,而气相(气泡)被建模为颗粒输送流体。还考虑了非曳力的影响,如虚拟质量和升力。根据上升管和下降管中相对气体含气率的分布解释了流动状态。对于 0.02-0.04 m s 的表面气体速度,微藻细胞处于悬浮状态,经历的平均剪切力为 23.52-44.56 s,远低于细胞损伤的临界极限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验