Suppr超能文献

采用机械球磨和放电等离子烧结制备的纳米晶Al7075 + 1 wt% Zr合金

Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering.

作者信息

Molnárová Orsolya, Málek Přemysl, Veselý Jozef, Šlapáková Michaela, Minárik Peter, Lukáč František, Chráska Tomáš, Novák Pavel, Průša Filip

机构信息

Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 12116, Czech Republic.

Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 18000, Czech Republic.

出版信息

Materials (Basel). 2017 Sep 20;10(9):1105. doi: 10.3390/ma10091105.

Abstract

The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder's microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al₃Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder.

摘要

对Al7075 + 1 wt % Zr合金的气雾化粉末和机械研磨粉末的微观结构、相组成及显微硬度进行了研究。气雾化粉末呈现出胞状微观结构(晶粒尺寸为几微米),沿胞界有金属间相层。机械研磨(每分钟400转(RPM)/8小时)导致晶粒尺寸减小至纳米晶范围(20至100纳米),同时金属间相溶解。研磨使粉末的显微硬度从97 HV增加到343 HV。通过放电等离子烧结(SPS)制备的坯块孔隙率可忽略不计。原始气雾化材料的晶粒尺寸得以保留,但连续的金属间相层被单个颗粒取代。再结晶导致由原始研磨粉末制备的SPS坯块中的晶粒尺寸增加到365纳米。在SPS坯块中观察到Al₃Zr相的小析出物,据信它们是SPS过程中亚微晶微观结构得以保留的原因。该SPS坯块中更强烈的析出可归因于研磨粉末中高位错密度和晶界导致的更快扩散。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c7/5615758/af429212daab/materials-10-01105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验