Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan.
Molecules. 2017 Sep 21;22(10):1584. doi: 10.3390/molecules22101584.
Calcineurin (CaN) is a Ca/calmodulin-dependent Ser/Thr protein phosphatase, which plays essential roles in many cellular and developmental processes. CaN comprises two subunits, a catalytic subunit (CaN-A, 60 kDa) and a regulatory subunit (CaN-B, 19 kDa). CaN-A tightly binds to CaN-B in the presence of minimal levels of Ca, but the enzyme is inactive until activated by CaM. Upon binding to CaM, CaN then undergoes a conformational rearrangement, the auto inhibitory domain is displaced and thus allows for full activity. In order to elucidate the regulatory role of CaM in the activation processes of CaN, we used NMR spectroscopy to determine the structure of the complex of CaM and the target peptide of CaN (CaNp). The CaM/CaNp complex shows a compact ellipsoidal shape with 8 α-helices of CaM wrapping around the CaNp helix. The RMSD of backbone and heavy atoms of twenty lowest energy structures of CaM/CaNp complex are 0.66 and 1.14 Å, respectively. The structure of CaM/CaNp complex can be classified as a novel binding mode family 1-18 with major anchor residues Ile and Leu to allocate the largest space between two domains of CaM. The relative orientation of CaNp to CaM is similar to the CaMKK peptide in the 1-16 binding mode with N- and C-terminal hydrophobic anchors of target sequence engulfed in the hydrophobic pockets of the N- and C-domain of CaM, respectively. In the light of the structural model of CaM/CaNp complex reported here, we provide new insight in the activation processes of CaN by CaM. We propose that the hydrophobic interactions between the Ca-saturated C-domain and C-terminal half of the target sequence provide driving forces for the initial recognition. Subsequent folding in the target sequence and structural readjustments in CaM enhance the formation of the complex and affinity to calcium. The electrostatic repulsion between CaM/CaNp complex and AID may result in the displacement of AID from active site for full activity.
钙调神经磷酸酶(CaN)是一种钙/钙调蛋白依赖的丝氨酸/苏氨酸蛋白磷酸酶,在许多细胞和发育过程中发挥着重要作用。CaN 由两个亚基组成,一个催化亚基(CaN-A,60 kDa)和一个调节亚基(CaN-B,19 kDa)。在 Ca 浓度较低的情况下,CaN-A 与 CaN-B 紧密结合,但在 CaM 激活之前,酶是无活性的。与 CaM 结合后,CaN 发生构象重排,自动抑制结构域被置换,从而使酶完全激活。为了阐明 CaM 在 CaN 激活过程中的调节作用,我们使用 NMR 光谱法测定了 CaM 与 CaN 的靶肽(CaNp)复合物的结构。CaM/CaNp 复合物呈紧凑的椭圆形,CaM 的 8 个α-螺旋围绕 CaNp 螺旋。CaM/CaNp 复合物二十个最低能量结构的骨架和重原子 RMSD 分别为 0.66 和 1.14 Å。CaM/CaNp 复合物的结构可归类为新型结合模式家族 1-18,主要锚定残基为 Ile 和 Leu,在 CaM 的两个结构域之间分配最大空间。CaNp 与 CaM 的相对取向与 1-16 结合模式中的 CaMKK 肽相似,靶序列的 N 端和 C 端疏水性锚定残基分别被 CaM 的 N 域和 C 域的疏水性口袋吞没。根据报告的 CaM/CaNp 复合物的结构模型,我们提供了 CaM 对 CaN 激活过程的新见解。我们提出,Ca 饱和的 C 结构域与靶序列的 C 端半段之间的疏水相互作用为初始识别提供了驱动力。随后靶序列的折叠和 CaM 的结构调整增强了复合物的形成和与钙的亲和力。CaM/CaNp 复合物与 AID 之间的静电排斥可能导致 AID 从活性位点置换,从而使酶完全激活。