Suppr超能文献

注意力的情绪元控制:机器人视觉搜索任务中感觉运动过程的自上而下调节。

Emotional metacontrol of attention: Top-down modulation of sensorimotor processes in a robotic visual search task.

作者信息

Belkaid Marwen, Cuperlier Nicolas, Gaussier Philippe

机构信息

ETIS UMR 8051, Université Paris Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise, France.

出版信息

PLoS One. 2017 Sep 21;12(9):e0184960. doi: 10.1371/journal.pone.0184960. eCollection 2017.

Abstract

Emotions play a significant role in internal regulatory processes. In this paper, we advocate four key ideas. First, novelty detection can be grounded in the sensorimotor experience and allow higher order appraisal. Second, cognitive processes, such as those involved in self-assessment, influence emotional states by eliciting affects like boredom and frustration. Third, emotional processes such as those triggered by self-assessment influence attentional processes. Last, close emotion-cognition interactions implement an efficient feedback loop for the purpose of top-down behavior regulation. The latter is what we call 'Emotional Metacontrol'. We introduce a model based on artificial neural networks. This architecture is used to control a robotic system in a visual search task. The emotional metacontrol intervenes to bias the robot visual attention during active object recognition. Through a behavioral and statistical analysis, we show that this mechanism increases the robot performance and fosters the exploratory behavior to avoid deadlocks.

摘要

情绪在内部调节过程中发挥着重要作用。在本文中,我们倡导四个关键观点。第一,新奇性检测可以基于感觉运动体验,并允许进行更高层次的评估。第二,认知过程,如那些涉及自我评估的过程,通过引发诸如无聊和沮丧等情感来影响情绪状态。第三,诸如由自我评估引发的情感过程会影响注意力过程。最后,紧密的情绪 - 认知交互实现了一个高效的反馈回路,用于自上而下的行为调节。后者就是我们所说的“情感元控制”。我们引入了一个基于人工神经网络的模型。这种架构用于在视觉搜索任务中控制一个机器人系统。情感元控制在主动目标识别过程中进行干预,以偏向机器人的视觉注意力。通过行为和统计分析,我们表明这种机制提高了机器人的性能,并促进了探索行为以避免僵局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f748/5608313/7c93fc5aa36c/pone.0184960.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验