Suppr超能文献

受生物启发的一维石墨烯纤维制备及其液滴收集应用

Bioinspired Fabrication of one dimensional graphene fiber with collection of droplets application.

作者信息

Song Yun-Yun, Liu Yan, Jiang Hao-Bo, Li Shu-Yi, Kaya Cigdem, Stegmaier Thomas, Han Zhi-Wu, Ren Lu-Quan

机构信息

Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022, P.R. China.

German Institutes of Textile and Fiber Research Denkendorf, Denkendorf, Germany.

出版信息

Sci Rep. 2017 Sep 21;7(1):12056. doi: 10.1038/s41598-017-12238-1.

Abstract

We designed a kind of smart bioinspired fiber with multi-gradient and multi-scale spindle knots by combining polydimethylsiloxane (PDMS) and graphene oxide (GO). Multilayered graphene structures can produce obvious wettability change after laser etching due to increased roughness. We demonstrate that the cooperation between curvature and the controllable wettability play an important role in water gathering, which regulate effectively the motion of tiny water droplets. In addition, due to the effective cooperation of multi-gradient and multi-scale hydrophilic spindle knots, the length of the three-phase contact line (TCL) can be longer, which makes a great contribution to the improvement of collecting efficiency and water-hanging ability. This study offers a novel insight into the design of smart materials that may control the transport of tiny drops reversibly in directions, which could potentially be extended to the realms of in microfluidics, fog harvesting filtration and condensers designs, and further increase water collection efficiency and hanging ability.

摘要

我们通过将聚二甲基硅氧烷(PDMS)和氧化石墨烯(GO)相结合,设计出了一种具有多梯度和多尺度纺锤结的智能仿生纤维。多层石墨烯结构在激光蚀刻后由于粗糙度增加会产生明显的润湿性变化。我们证明曲率与可控润湿性之间的协同作用在水聚集过程中起着重要作用,它有效地调节了微小水滴的运动。此外,由于多梯度和多尺度亲水性纺锤结的有效协同作用,三相接触线(TCL)的长度可以更长,这对提高收集效率和挂水能力有很大贡献。这项研究为智能材料的设计提供了新的见解,这类智能材料可以可逆地控制微小液滴在不同方向上的传输,这有可能扩展到微流体、雾收集过滤和冷凝器设计领域,并进一步提高集水效率和挂水能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76eb/5608905/485de800729c/41598_2017_12238_Fig1_HTML.jpg

相似文献

1
4
Bioinspired one-dimensional materials for directional liquid transport.
Acc Chem Res. 2014 Aug 19;47(8):2342-52. doi: 10.1021/ar5000693. Epub 2014 Jul 14.
5
Water collection behavior and hanging ability of bioinspired fiber.
Langmuir. 2012 Mar 13;28(10):4737-43. doi: 10.1021/la204682j. Epub 2012 Feb 29.
6
Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity.
Chem Commun (Camb). 2013 Jun 11;49(46):5253-5. doi: 10.1039/c3cc41060a.
7
Microfluidic Generation of Bioinspired Spindle-knotted Graphene Microfibers for Oil Absorption.
Chemphyschem. 2018 Aug 17;19(16):1990-1994. doi: 10.1002/cphc.201700939. Epub 2017 Nov 13.
8
Water Harvesting of Bioinspired Microfibers with Rough Spindle-Knots from Microfluidics.
Small. 2020 Mar;16(9):e1901819. doi: 10.1002/smll.201901819. Epub 2019 Aug 5.
9
Controlling of water collection ability by an elasticity-regulated bioinspired fiber.
Macromol Rapid Commun. 2015 Mar;36(5):459-64. doi: 10.1002/marc.201400695. Epub 2015 Jan 19.
10
Excellent Fog-Droplets Collector via Integrative Janus Membrane and Conical Spine with Micro/Nanostructures.
Small. 2018 Jul;14(27):e1801335. doi: 10.1002/smll.201801335. Epub 2018 May 29.

引用本文的文献

1
Research progress of bionic fog collection surfaces based on special structures from natural organisms.
RSC Adv. 2023 Sep 19;13(40):27839-27864. doi: 10.1039/d3ra04253g. eCollection 2023 Sep 18.
2
Three-Dimensional Multilayer Vertical Filament Meshes for Enhancing Efficiency in Fog Water Harvesting.
ACS Omega. 2021 Jan 28;6(5):3910-3920. doi: 10.1021/acsomega.0c05776. eCollection 2021 Feb 9.

本文引用的文献

2
High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires.
ACS Nano. 2016 Dec 27;10(12):10681-10688. doi: 10.1021/acsnano.6b05595. Epub 2016 Oct 4.
3
Doping-Induced Tunable Wettability and Adhesion of Graphene.
Nano Lett. 2016 Jul 13;16(7):4708-12. doi: 10.1021/acs.nanolett.6b02228. Epub 2016 Jul 1.
4
Electrospun Multiscale Structured Membrane for Efficient Water Collection and Directional Transport.
Small. 2016 Feb 24;12(8):1000-5. doi: 10.1002/smll.201502942. Epub 2016 Jan 13.
5
Ultrarobust Transparent Cellulose Nanocrystal-Graphene Membranes with High Electrical Conductivity.
Adv Mater. 2016 Feb 17;28(7):1501-9. doi: 10.1002/adma.201504438. Epub 2015 Dec 8.
6
Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic 'liquid diode'.
J R Soc Interface. 2015 Aug 6;12(109):20150415. doi: 10.1098/rsif.2015.0415.
7
Highly compressible 3D periodic graphene aerogel microlattices.
Nat Commun. 2015 Apr 22;6:6962. doi: 10.1038/ncomms7962.
8
Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface.
Langmuir. 2015 Apr 7;31(13):4032-9. doi: 10.1021/acs.langmuir.5b00328. Epub 2015 Mar 24.
9
Controlling of water collection ability by an elasticity-regulated bioinspired fiber.
Macromol Rapid Commun. 2015 Mar;36(5):459-64. doi: 10.1002/marc.201400695. Epub 2015 Jan 19.
10
Design for approaching Cicada-wing reflectance in low- and high-index biomimetic nanostructures.
ACS Nano. 2015 Jan 27;9(1):301-11. doi: 10.1021/nn506401h. Epub 2015 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验