Parsonage D, Wilke-Mounts S, Senior A E
Department of Biochemistry, University of Rochester Medical Center, New York 14642.
Arch Biochem Biophys. 1988 Feb 15;261(1):222-5. doi: 10.1016/0003-9861(88)90121-x.
Previous studies in which dicyclohexylcarbodiimide (DCCD) was used to inactivate F1-ATPase enzymes have suggested that two glutamate residues in the beta-subunit are essential for catalysis. In the Escherichia coli F1-ATPase, these are residues beta-Glu-181 and beta-Glu-192. Oligonucleotide-directed mutagenesis was used to change these residues to beta-Gln-181 and beta-Gln-192. The beta-Gln-181 mutation produced strong impairment of oxidative phosphorylation in vivo and also of ATPase and ATP-driven proton-pumping activities in membranes assayed in vitro. A low level of each activity was detected and an F1-ATPase appeared to be assembled normally on the membranes. Therefore, it is suggested that the carboxyl side chain at residue beta-181 is important, although not absolutely required, for catalysis in both directions on E. coli F1-ATPase. The beta-Gln-192 mutation produced partial inhibition of oxidative phosphorylation in vivo and membrane ATPase activity was reduced by 78%. These results contrast with the complete or near-complete inactivation seen when E. coli F1-ATPase is reacted with DCCD and imply that DCCD-inactivation is attributable more to the attachment of the bulky DCCD molecule than to the derivatization of the carboxyl side chain of residue beta-Glu-192. M. Ohtsubo and colleagues (Biochem. Biophys. Res. Commun. (1987) 146, 705-710) described mutagenesis of the F1-beta-subunit of thermophilic bacterium PS3. Mutations (Glu----Gln) of the residues homologous to Glu-181 and Glu-192 of E. coli F1-beta-subunit both caused total inhibition of ATPase activity. Therefore, there was a marked difference in results obtained when the same residues were modified in the PS3 and E. coli F1-beta-subunits.
此前使用二环己基碳二亚胺(DCCD)使F1 - ATP酶失活的研究表明,β亚基中的两个谷氨酸残基对催化作用至关重要。在大肠杆菌F1 - ATP酶中,这两个残基分别是β - Glu - 181和β - Glu - 192。利用寡核苷酸定向诱变技术将这些残基分别替换为β - Gln - 181和β - Gln - 192。β - Gln - 181突变导致体内氧化磷酸化显著受损,同时也使体外测定的膜中ATP酶活性以及ATP驱动的质子泵活性受到强烈抑制。检测到各活性水平较低,且F1 - ATP酶似乎能正常组装在膜上。因此,有人提出,β - 181位残基的羧基侧链虽然不是大肠杆菌F1 - ATP酶双向催化绝对必需的,但对催化作用很重要。β - Gln - 192突变导致体内氧化磷酸化部分受抑制,膜ATP酶活性降低了78%。这些结果与大肠杆菌F1 - ATP酶与DCCD反应时出现的完全或近乎完全失活形成对比,这意味着DCCD失活更多是由于庞大的DCCD分子附着,而非β - Glu - 192残基羧基侧链的衍生化。大坪茂等研究人员(《生物化学与生物物理研究通讯》(1987年)146卷,705 - 710页)描述了嗜热细菌PS3的F1 - β亚基诱变情况。与大肠杆菌F1 - β亚基的Glu - 181和Glu - 192同源的残基发生(Glu→Gln)突变,均导致ATP酶活性完全抑制。因此,在PS3和大肠杆菌F1 - β亚基中对相同残基进行修饰时,得到的结果存在显著差异。