Suppr超能文献

利用磁共振成像进行脂肪分数映射:对病理生理学的洞察。

Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology.

作者信息

Bray Timothy Jp, Chouhan Manil D, Punwani Shonit, Bainbridge Alan, Hall-Craggs Margaret A

机构信息

1 Centre for Medical Imaging, University College London , University College London , London , UK.

2 Department of Medical Physics, University College London Hospitals , University College London Hospitals , London , UK.

出版信息

Br J Radiol. 2018 Sep;91(1089):20170344. doi: 10.1259/bjr.20170344. Epub 2017 Nov 21.

Abstract

Adipose cells have traditionally been viewed as a simple, passive energy storage depot for triglycerides. However, in recent years it has become clear that adipose cells are highly physiologically active and have a multitude of endocrine, metabolic, haematological and immune functions. Changes in the number or size of adipose cells may be directly implicated in disease (e.g. in the metabolic syndrome), but may also be linked to other pathological processes such as inflammation, malignant infiltration or infarction. MRI is ideally suited to the quantification of fat, since most of the acquired signal comes from water and fat protons. Fat fraction (FF, the proportion of the acquired signal derived from fat protons) has, therefore, emerged as an objective, image-based biomarker of disease. Methods for FF quantification are becoming increasingly available in both research and clinical settings, but these methods vary depending on the scanner, manufacturer, imaging sequence and reconstruction software being used. Careful selection of the imaging method-and correct interpretation-can improve the accuracy of FF measurements, minimize potential confounding factors and maximize clinical utility. Here, we review methods for fat quantification and their strengths and weaknesses, before considering how they can be tailored to specific applications, particularly in the gastrointestinal and musculoskeletal systems. FF quantification is becoming established as a clinical and research tool, and understanding the underlying principles will be helpful to both imaging scientists and clinicians.

摘要

传统上,脂肪细胞被视为甘油三酯简单、被动的能量储存库。然而,近年来已明确脂肪细胞具有高度的生理活性,并具备多种内分泌、代谢、血液学和免疫功能。脂肪细胞数量或大小的变化可能直接与疾病相关(如在代谢综合征中),但也可能与其他病理过程有关,如炎症、恶性浸润或梗死。磁共振成像(MRI)非常适合用于脂肪定量,因为采集到的信号大部分来自水和脂肪质子。因此,脂肪分数(FF,即采集信号中来自脂肪质子的比例)已成为一种基于图像的客观疾病生物标志物。在研究和临床环境中,FF定量方法越来越多,但这些方法因所使用的扫描仪、制造商、成像序列和重建软件而异。仔细选择成像方法并正确解读,可以提高FF测量的准确性,将潜在的混杂因素降至最低,并最大限度地发挥临床效用。在此,我们先回顾脂肪定量方法及其优缺点,然后再考虑如何将其应用于特定领域,特别是胃肠道和肌肉骨骼系统。FF定量正逐渐成为一种临床和研究工具,了解其基本原理将对影像科学家和临床医生都有所帮助。

相似文献

1
Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology.
Br J Radiol. 2018 Sep;91(1089):20170344. doi: 10.1259/bjr.20170344. Epub 2017 Nov 21.
2
MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles.
Magn Reson Med. 2020 Feb;83(2):621-634. doi: 10.1002/mrm.27960. Epub 2019 Sep 10.
5
6
Water-Fat Separation in MR Fingerprinting for Quantitative Monitoring of the Skeletal Muscle in Neuromuscular Disorders.
Radiology. 2021 Sep;300(3):652-660. doi: 10.1148/radiol.2021204028. Epub 2021 Jul 13.
7
Bone marrow fat fraction assessment in regard to physical activity: KORA FF4-3-T MR imaging in a population-based cohort.
Eur Radiol. 2020 Jun;30(6):3417-3428. doi: 10.1007/s00330-019-06612-y. Epub 2020 Feb 21.
8
[New insights into adipose cell biology].
Ann Pharm Fr. 2004 Mar;62(2):87-91. doi: 10.1016/s0003-4509(04)94286-1.
9
Comparison of chemical shift-encoded water-fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females.
J Magn Reson Imaging. 2017 Jan;45(1):66-73. doi: 10.1002/jmri.25351. Epub 2016 Jun 24.
10
Quantification of low fat contents: a comparison of MR imaging and spectroscopy methods at 1.5 and 3 T.
Magn Reson Imaging. 2012 Dec;30(10):1461-7. doi: 10.1016/j.mri.2012.04.023. Epub 2012 Jul 24.

引用本文的文献

1
Novel Strategies to Conquer Residual Adiposity Risk in Cardiovascular Disease.
Curr Atheroscler Rep. 2025 Sep 10;27(1):90. doi: 10.1007/s11883-025-01331-w.
2
Genetic architecture of bone marrow fat fraction implies its involvement in osteoporosis risk.
Nat Commun. 2025 Aug 12;16(1):7490. doi: 10.1038/s41467-025-62826-3.
4
Musculoskeletal manifestations of sickle cell disease: an imaging perspective.
Skeletal Radiol. 2025 Jun 21. doi: 10.1007/s00256-025-04975-6.
5
Age-related differences in intramuscular fat distribution: spatial quantification in human ankle plantar flexors.
Front Bioeng Biotechnol. 2025 Jun 2;13:1594557. doi: 10.3389/fbioe.2025.1594557. eCollection 2025.
7
Proton Density Fat Fraction Micro-MRI for Non-Invasive Quantification of Bone Marrow Aging and Radiation Effects in Mice.
Bioengineering (Basel). 2025 Mar 28;12(4):349. doi: 10.3390/bioengineering12040349.

本文引用的文献

3
4
R2*-relaxometry of the pancreas in patients with human hemochromatosis protein associated hereditary hemochromatosis.
Eur J Radiol. 2017 Apr;89:149-155. doi: 10.1016/j.ejrad.2017.02.006. Epub 2017 Feb 5.
5
Non-Alcoholic Fatty Pancreatic Disease: A Review of Literature.
Gastroenterology Res. 2016 Dec;9(6):87-91. doi: 10.14740/gr731w. Epub 2016 Dec 23.
6
Fracture Risk in Type 2 Diabetes: Current Perspectives and Gender Differences.
Int J Endocrinol. 2016;2016:1615735. doi: 10.1155/2016/1615735. Epub 2016 Dec 4.
7
MRI as outcome measure in facioscapulohumeral muscular dystrophy: 1-year follow-up of 45 patients.
J Neurol. 2017 Mar;264(3):438-447. doi: 10.1007/s00415-016-8361-3. Epub 2016 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验